On the Cauchy problem for gravity water waves
暂无分享,去创建一个
[1] S. Alinhac,et al. Existence d'ondes de rarefaction pour des systems quasi‐lineaires hyperboliques multidimensionnels , 1989 .
[2] Walter Craig,et al. An existence theory for water waves and the boussinesq and korteweg-devries scaling limits , 1985 .
[3] J. Chemin. Calcul paradifférentiel précisé et applications à des équations aux dérivées partielles non semilinéaires , 1988 .
[4] David Lannes,et al. A Stability Criterion for Two-Fluid Interfaces and Applications , 2010, 1005.4565.
[5] F. Rousset,et al. Uniform Regularity and Vanishing Viscosity Limit for the Free Surface Navier–Stokes Equations , 2012, 1202.0657.
[6] Sijue Wu. On a class of self-similar 2D surface water waves , 2012, 1206.2208.
[7] Daniel Tataru,et al. Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation , 2000 .
[8] Nader Masmoudi,et al. Global Existence for Capillary Water Waves , 2012, 1210.1601.
[9] S. Alinhac. Paracomposition et operateurs paradifferentiels , 1986 .
[10] Jean-Yves Chemin,et al. Perfect Incompressible Fluids , 1998 .
[11] Yan Guo,et al. Local well-posedness of the viscous surface wave problem without surface tension , 2013 .
[12] J. Boussinesq,et al. Sur une importante simplification de la théorie des ondes que produisent, à la surface d'un liquide, l'émersion d'un solide ou l'impulsion d'un coup de vent , 1910 .
[13] Klaus Beyer,et al. On the Cauchy problem for a capillary drop. Part I: irrotational motion , 1998 .
[14] Walter Craig,et al. Numerical simulation of gravity waves , 1993 .
[15] К Е Вейн,et al. Математические аспекты поверхностных волн на воде@@@Mathematical aspects of surface water waves , 2007 .
[16] G. Lebeau. Régularité du problème de Kelvin–Helmholtz pour l’équation d’Euler 2D , 2001 .
[17] C. Fefferman,et al. Finite time singularities for the free boundary incompressible Euler equations , 2011, 1112.2170.
[18] Sijue Wu,et al. Global wellposedness of the 3-D full water wave problem , 2011 .
[19] D. Christodoulou,et al. S E M I N A I R E E quations aux , 2008 .
[20] C. Bardos,et al. Mathematics for 2d Interfaces , 2010, 1005.5329.
[21] Walter Craig,et al. Traveling Two and Three Dimensional Capillary Gravity Water Waves , 2000, SIAM J. Math. Anal..
[22] Hideaki Yosihara,et al. Gravity Waves on the Free Surface of an Incompressible Perfect Fluid of Finite Depth , 1982 .
[23] R. Danchin,et al. Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .
[24] Sijue Wu,et al. Well-posedness in Sobolev spaces of the full water wave problem in 3-D , 1999 .
[25] David Lannes,et al. The Water Waves Problem: Mathematical Analysis and Asymptotics , 2013 .
[26] Gerd Grubb,et al. PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .
[27] P. Secchi,et al. A priori Estimates for 3D Incompressible Current-Vortex Sheets , 2011, 1102.2763.
[28] Hans Lindblad. Well-posedness for the motion of an incompressible liquid with free surface boundary , 2005 .
[29] Jalal Shatah,et al. Geometry and a priori estimates for free boundary problems of the Euler's equation , 2006 .
[30] Daniel Coutand,et al. Well-posedness of the free-surface incompressible Euler equations with or without surface tension , 2005 .
[31] M. Safonov. Boundary estimates for positive solutions to second order elliptic equations , 2008, 0810.0522.
[32] J. Reeder,et al. Three-dimensional, nonlinear wave interaction in water of constant depth☆ , 1981 .
[33] M. Sablé-Tougeron,et al. Régularité microlocale pour des problèmes aux limites non linéaires , 1984 .
[34] J. Shatah,et al. Local Well-Posedness for Fluid Interface Problems , 2011 .
[35] J. Chemin,et al. Équations d'ondes quasilinéaires et estimations de Strichartz , 1999 .
[36] Guy Metivier,et al. Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems , 2008 .
[37] Sijue Wu,et al. Almost global wellposedness of the 2-D full water wave problem , 2009, 0910.2473.
[38] Vladimir E. Zakharov,et al. Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .
[39] T. Alazard,et al. The Water-Wave Equations: From Zakharov to Euler , 2012, 1212.0632.
[40] J. Bony,et al. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .
[41] W. Craig,et al. Mathematical aspects of surface water waves , 2007 .
[42] Nader Masmoudi,et al. Global solutions for the gravity water waves equation in dimension 3 , 2009 .
[43] S. Shkoller,et al. On the Finite-Time Splash and Splat Singularities for the 3-D Free-Surface Euler Equations , 2012, 1201.4919.
[44] J. Marzuola,et al. On the regularity of the flow map for the gravity-capillary equations , 2011, 1111.5361.
[45] S. Alinhac,et al. Interaction d'ondes simples pour des équations complètement non linéaires , 1988 .
[46] Thomas Alazard,et al. On the water-wave equations with surface tension , 2009, 0906.4406.
[47] T. Alazard,et al. STRICHARTZ ESTIMATES FOR WATER WAVES by T. Alazard, N. Burq & C. Zuily , 2010 .
[48] Sijue Wu,et al. Well-posedness in Sobolev spaces of the full water wave problem in 2-D , 1997 .
[49] T. Alazard,et al. Paralinearization of the Dirichlet to Neumann Operator, and Regularity of Three-Dimensional Water Waves , 2009, 0901.2888.
[50] Nader Masmoudi,et al. The zero surface tension limit two‐dimensional water waves , 2005 .
[51] C. Fefferman,et al. Turning waves and breakdown for incompressible flows , 2010, Proceedings of the National Academy of Sciences.
[52] Walter Craig,et al. The modulational regime of three-dimensional water waves and the Davey-Stewartson system , 1997 .
[53] L. Hörmander,et al. Lectures on Nonlinear Hyperbolic Differential Equations , 1997 .
[54] Ping Zhang,et al. On the free boundary problem of three‐dimensional incompressible Euler equations , 2008 .
[55] A. Córdoba,et al. The Rayleigh-Taylor condition for the evolution of irrotational fluid interfaces , 2009, Proceedings of the National Academy of Sciences.
[56] L. N. Sretenskii. A Cauchy-Poisson problem , 1971 .
[57] A priori estimates for fluid interface problems , 2006, math/0609542.
[58] David Lannes,et al. Well-posedness of the water-waves equations , 2005 .