High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

[1]  J. Raven,et al.  Could land‐based early photosynthesizing ecosystems have bioengineered the planet in mid‐Palaeozoic times? , 2015 .

[2]  D. Beerling,et al.  Constraining the role of early land plants in Palaeozoic weathering and global cooling , 2015, Proceedings of the Royal Society B: Biological Sciences.

[3]  Togwell A Jackson,et al.  Weathering, secondary mineral genesis, and soil formation caused by lichens and mosses growing on granitic gneiss in a boreal forest environment , 2015 .

[4]  P. Strother,et al.  The terrestrial biota prior to the origin of land plants (embryophytes): a review of the evidence , 2015 .

[5]  D. Edwards A palaeobotanical pot‐pourri , 2015 .

[6]  J. Buoncristiani,et al.  Effect of the Ordovician paleogeography on the (in)stability of the climate , 2014 .

[7]  Maurizio Santoro,et al.  Global covariation of carbon turnover times with climate in terrestrial ecosystems , 2014, Nature.

[8]  rer. nat. Arens,et al.  Global limits on silicate weathering and implications for the silicate weathering feedback , 2014 .

[9]  W. Elbert,et al.  Estimating impacts of lichens and bryophytes on global biogeochemical cycles , 2014 .

[10]  S. Higgins,et al.  On the potential vegetation feedbacks that enhance phosphorus availability – insights from a process-based model linking geological and ecological timescales , 2013 .

[11]  W. Elbert,et al.  Estimating global carbon uptake by lichens and bryophytes with a process-based model , 2013 .

[12]  Zhongling Guo A simple method to downscale daily wind statistics to hourly wind data , 2013, 1305.3367.

[13]  Marie-Alice Foujols,et al.  Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model , 2013, Climate Dynamics.

[14]  M. Andreae,et al.  Contribution of cryptogamic covers to the global cycles of carbon and nitrogen , 2012 .

[15]  Darren T. Drewry,et al.  The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing t , 2012 .

[16]  Charles H. Wellman,et al.  A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[17]  T. Lenton,et al.  First plants cooled the Ordovician , 2012 .

[18]  Jonathan M Adams,et al.  Effect of lichen colonization on chemical weathering of hornblende granite as estimated by aqueous elemental flux , 2012 .

[19]  D. Beerling,et al.  Contrasting arbuscular mycorrhizal responses of vascular and non-vascular plants to a simulated Palaeozoic CO2 decline , 2012, Nature Communications.

[20]  Akihiko Ito,et al.  A historical meta‐analysis of global terrestrial net primary productivity: are estimates converging? , 2011 .

[21]  A. Kleidon,et al.  Eco-hydrological versus supply-limited weathering regimes and the potential for biotic enhancement of weathering at the global scale , 2011 .

[22]  K. Sharma Inorganic Phosphate Solubilization by Fungi Isolated from Agriculture Soil , 2011 .

[23]  B. Weber,et al.  Respiration‐induced weathering patterns of two endolithically growing lichens , 2011, Geobiology.

[24]  P. Franks,et al.  Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. , 2010, Nature communications.

[25]  F. Woodward,et al.  Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate , 2010, Science.

[26]  J. Monteith Evaporation and surface temperature , 2007 .

[27]  S. J. Brentnall,et al.  BRYOCARB: A process-based model of thallose liverwort carbon isotope fractionation in response to CO2, O2, light and temperature , 2006 .

[28]  A. Fredeen,et al.  Net ecosystem CO2 exchange for moss and lichen dominated forest floors of old-growth sub-boreal spruce forests in central British Columbia, Canada , 2006 .

[29]  I. Holman,et al.  A robust and parsimonious regional disaggregation method for deriving hourly rainfall intensities for the UK , 2005 .

[30]  T. Taylor,et al.  Lichen-Like Symbiosis 600 Million Years Ago , 2005, Science.

[31]  A. Belward,et al.  GLC2000: a new approach to global land cover mapping from Earth observation data , 2005 .

[32]  E. Stackebrandt,et al.  Taxonomy and systematics. , 2005 .

[33]  Timothy M. Lenton,et al.  COPSE: a new model of biogeochemical cycling over Phanerozoic time , 2004 .

[34]  D. Pollard,et al.  Obliquity forcing with 8–12 times preindustrial levels of atmospheric pCO2 during the Late Ordovician glaciation , 2003 .

[35]  Wolfgang Ludwig,et al.  Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans , 2003 .

[36]  Heather Viles,et al.  The nature and rate of weathering by lichens on lava flows on Lanzarote , 2002 .

[37]  D. Schwartzman,et al.  Weathering rates of bedrock by lichens: a mini watershed study , 2002 .

[38]  F. Berendse,et al.  Competition between Sphagnum magellanicum and Eriophorum angustifolium as affected by raised CO2 and increased N deposition , 2002 .

[39]  Jayne Belnap,et al.  Nitrogen fixation in biological soil crusts from southeast Utah, USA , 2002, Biology and Fertility of Soils.

[40]  J. Gray,et al.  A critique of Phanerozoic climatic models involving changes in the CO2 content of the atmosphere , 2001 .

[41]  R. Berner Modeling atmospheric O2 over Phanerozoic time , 2001 .

[42]  R. Berner,et al.  Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering , 2000 .

[43]  L. Kump,et al.  CHEMICAL WEATHERING ,A TMOSPHERIC CO 2 , AND CLIMATE , 2000 .

[44]  Jie Chen,et al.  Weathering of rocks induced by lichen colonization — a review , 2000 .

[45]  P. Kuiper,et al.  Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst , 2000 .

[46]  A. Brazel,et al.  Direct measurement of the combined effects of lichen, rainfall, and temperature onsilicate weathering ☆ , 1999 .

[47]  H. Strauss,et al.  87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater , 1999 .

[48]  B. Dupré,et al.  Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers , 1999 .

[49]  J. Moncrieff,et al.  A model for soil CO2 production and transport 2: Application to a florida Pinus elliotte plantation , 1999 .

[50]  P. S. Karlsson,et al.  Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate‐arctic regions , 1999 .

[51]  Peter K. Dunn,et al.  A daily rainfall disaggregation model , 1998 .

[52]  J. Grace,et al.  Carbon gains by desiccation‐tolerant plants at elevated CO2 , 1998 .

[53]  R. Jacob Low frequency variability in a simulated atmosphere-ocean system , 1997 .

[54]  R. Berner,et al.  Promotion of chemical weathering by higher plants: field observations on Hawaiian basalts , 1996 .

[55]  H. Viles,et al.  Rock-weathering by the lichenLecidea auriculata in an arctic alpine environment , 1995 .

[56]  Jean-Luc Probst,et al.  A global model for present‐day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM‐CO2) , 1995 .

[57]  C. Yapp,et al.  Productivity of pre-vascular continental biota inferred from the Fe(CO3)OH content of goethite , 1994, Nature.

[58]  M. Sonesson,et al.  CO2 environment, microclimate and photosynthetic characteristics of the moss Hylocomium splendens in a subarctic habitat , 1992, Oecologia.

[59]  W. C. Pitman,et al.  The effect of sea level changes on the morphology of mountain belts , 1991 .

[60]  B. Kimball,et al.  Generation of diurnal solar radiation, temperature, and humidity patterns , 1986 .

[61]  R. Garrels,et al.  The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years , 1983 .

[62]  C. W. Richardson Stochastic simulation of daily precipitation, temperature, and solar radiation , 1981 .

[63]  W. D. Keller,et al.  A comparative study of the role of lichens and "inorganic" processes in the chemical weathering of Recent Hawaiian lava flows , 1970 .

[64]  R. Snow,et al.  Review of the Evidence. , 1964, Science.

[65]  E. Raevskaya,et al.  Cryptospores from the Katian (Upper Ordovician) of the Tungus basin: The first evidence for early land plants from the Siberian paleocontinent , 2016 .

[66]  P. Strother,et al.  Cryptospores from the Hanadir Shale Member of the Qasim Formation, Ordovician (Darriwilian) of Saudi Arabia: taxonomy and systematics , 2015 .

[67]  R. Honegger,et al.  The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. , 2013, The New phytologist.

[68]  C. Scotese,et al.  Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate , 2013 .

[69]  D. Harper,et al.  Early Palaeozoic Biogeography and Palaeogeography , 2013 .

[70]  A. Fredeen,et al.  Net ecosystem CO 2 exchange for moss and lichen dominated forest floors of old-growth sub-boreal spruce forests in central British Columbia , Canada , 2007 .

[71]  J. Rozema,et al.  Plants and Climate Change , 2006 .

[72]  A. Belward,et al.  GLC 2000 : a new approach to global land cover mapping from Earth observation data , 2005 .

[73]  J. Jauhiainen,et al.  Photosynthesis of Sphagnum fuscum at long-term raised CO 2 concentrations , 1999 .

[74]  R. Berner,et al.  GEOCARB III : A REVISED MODEL OF ATMOSPHERIC CO 2 OVER PHANEROZOIC TIME , 2001 .

[75]  A. Kaplan,et al.  A quantitative model for inorganic carbon fluxes and photosynthesis in cyanobacteria , 1989 .