Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant

Abstract This paper deals with positive solutions of { u t = Δ u − ∇ ⋅ ( u ∇ v ) , x ∈ Ω , t > 0 , v t = Δ v − u v , x ∈ Ω , t > 0 , under homogeneous Neumann boundary conditions in bounded convex domains Ω ⊂ R 3 with smooth boundary. It is shown that for arbitrarily large initial data, this problem admits at least one global weak solution for which there exists T > 0 such that ( u , v ) is bounded and smooth in Ω × ( T , ∞ ) . Moreover, it is asserted that such solutions approach spatially constant equilibria in the large time limit.

[1]  Harald Garcke,et al.  On A Fourth-Order Degenerate Parabolic Equation: Global Entropy Estimates, Existence, And Qualitativ , 1998 .

[2]  Nicholas D. Alikakos,et al.  LP Bounds of solutions of reaction-diffusion equations , 1979 .

[3]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[4]  G. Rosen,et al.  Steady-state distribution of bacteria chemotactic toward oxygen , 1978, Bulletin of mathematical biology.

[5]  D. Aronson The porous medium equation , 1986 .

[6]  Alexander Lorz,et al.  A coupled chemotaxis-fluid model: Global existence , 2011 .

[7]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[8]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[9]  Michael Winkler,et al.  Absence of collapse in a parabolic chemotaxis system with signal‐dependent sensitivity , 2010 .

[10]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[11]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[12]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[13]  I. Tuval,et al.  Bacterial swimming and oxygen transport near contact lines. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Youshan Tao,et al.  Boundedness in a chemotaxis model with oxygen consumption by bacteria , 2011 .

[15]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[16]  Alexander Lorz,et al.  Global Solutions to the Coupled Chemotaxis-Fluid Equations , 2010 .

[17]  Michael Winkler,et al.  Global Large-Data Solutions in a Chemotaxis-(Navier–)Stokes System Modeling Cellular Swimming in Fluid Drops , 2012 .

[18]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[19]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[20]  R. Temam Navier-Stokes Equations , 1977 .

[21]  Michael Winkler,et al.  A critical exponent in a degenerate parabolic equation , 2002 .

[22]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[23]  W. Rappel,et al.  Eukaryotic chemotaxis , 2009, Wiley interdisciplinary reviews. Systems biology and medicine.