Psychedelics: preclinical insights provide directions for future research

[1]  D. E. Olson,et al.  5-HT2ARs Mediate Therapeutic Behavioral Effects of Psychedelic Tryptamines. , 2023, ACS chemical neuroscience.

[2]  Antonina L. Nazarova,et al.  Pharmacological Mechanism of the Non-hallucinogenic 5-HT2A Agonist Ariadne and Analogs. , 2022, ACS chemical neuroscience.

[3]  M. Liechti,et al.  Lysergic Acid Diethylamide–Assisted Therapy in Patients With Anxiety With and Without a Life-Threatening Illness: A Randomized, Double-Blind, Placebo-Controlled Phase II Study , 2022, Biological Psychiatry.

[4]  Xi-Ping Huang,et al.  Molecular basis for selective activation of DREADD-based chemogenetics , 2022, Nature.

[5]  D. E. Olson,et al.  The neural basis of psychedelic action , 2022, Nature Neuroscience.

[6]  Samuel T. Slocum,et al.  Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity , 2022, Nature.

[7]  B. Roth,et al.  Signaling snapshots of a serotonin receptor activated by the prototypical psychedelic LSD , 2022, Neuron.

[8]  B. Roth,et al.  Molecular insights into the regulation of constitutive activity by RNA editing of 5HT2C serotonin receptors , 2022, Cell reports.

[9]  Samuel T. Slocum,et al.  5-HT2A SNPs Alter the Pharmacological Signaling of Potentially Therapeutic Psychedelics. , 2022, ACS chemical neuroscience.

[10]  B. Shoichet,et al.  Inactive and active state structures template selective tools for the human 5-HT5A receptor , 2022, Nature Structural & Molecular Biology.

[11]  Clinton E. Canal,et al.  "Selective" serotonin 5-HT2A receptor antagonists. , 2022, Biochemical pharmacology.

[12]  Tristan D. McClure-Begley,et al.  The promises and perils of psychedelic pharmacology for psychiatry , 2022, Nature Reviews Drug Discovery.

[13]  Samuel T. Slocum,et al.  Structure-Based Design of a Chemical Probe Set for the 5-HT5A Serotonin Receptor. , 2022, Journal of medicinal chemistry.

[14]  Zhipu Luo,et al.  Structure-based discovery of nonhallucinogenic psychedelic analogs , 2022, Science.

[15]  Lynette B Naler,et al.  Prolonged epigenomic and synaptic plasticity alterations following single exposure to a psychedelic in mice , 2021, Cell reports.

[16]  R. Rodriguiz,et al.  LSD-stimulated behaviors in mice require β-arrestin 2 but not β-arrestin 1 , 2021, Scientific Reports.

[17]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[18]  S. Thompson,et al.  Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice , 2021, Proceedings of the National Academy of Sciences.

[19]  Pasha A Davoudian,et al.  Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo , 2021, Neuron.

[20]  Brandon M. Brown,et al.  A Non-Hallucinogenic Psychedelic Analog with Therapeutic Potential , 2020, Nature.

[21]  Matthew W. Johnson,et al.  Effects of Psilocybin-Assisted Therapy on Major Depressive Disorder , 2020, JAMA psychiatry.

[22]  J. Wallach,et al.  Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species , 2020, Neuropharmacology.

[23]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[24]  Samuel T. Slocum,et al.  Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys , 2019, Nature Neuroscience.

[25]  Mitchell H. Murdock,et al.  Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation , 2019, Science.

[26]  F. Vollenweider,et al.  Serotonin 2A Receptor Signaling Underlies LSD-induced Alteration of the Neural Response to Dynamic Changes in Music , 2018, Cerebral cortex.

[27]  D. E. Olson,et al.  Psychedelics Promote Structural and Functional Neural Plasticity , 2018, Cell reports.

[28]  D. E. Nichols,et al.  Crystal Structure of an LSD-Bound Human Serotonin Receptor , 2017, Cell.

[29]  Matthew W. Johnson,et al.  Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double-blind trial , 2016, Journal of psychopharmacology.

[30]  B. Schmidt,et al.  Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial , 2016, Journal of psychopharmacology.

[31]  F. Vollenweider,et al.  Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience , 2016, European Neuropsychopharmacology.

[32]  David E. Nichols,et al.  Psychedelics , 2016, Pharmacological Reviews.

[33]  Maria F. Sassano,et al.  PRESTO-TANGO: an open-source resource for interrogation of the druggable human GPCR-ome , 2015, Nature Structural &Molecular Biology.

[34]  F. Vollenweider,et al.  Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin. , 2014, Cerebral cortex.

[35]  Icilio Cavero,et al.  Safety Pharmacology assessment of drugs with biased 5-HT(2B) receptor agonism mediating cardiac valvulopathy. , 2014, Journal of pharmacological and toxicological methods.

[36]  F. Vollenweider,et al.  Psilocybin Biases Facial Recognition, Goal-Directed Behavior, and Mood State Toward Positive Relative to Negative Emotions Through Different Serotonergic Subreceptors , 2012, Biological Psychiatry.

[37]  M. Lapeyre-Mestre,et al.  Valvular heart disease in a patient taking 3,4-methylenedioxymethamphetamine (MDMA, 'Ecstasy'). , 2012, British journal of clinical pharmacology.

[38]  G. Aghajanian,et al.  Brain-Derived Neurotrophic Factor Val66Met Allele Impairs Basal and Ketamine-Stimulated Synaptogenesis in Prefrontal Cortex , 2012, Biological Psychiatry.

[39]  G. Marek,et al.  Heterocomplex formation of 5-HT2A-mGlu2 and its relevance for cellular signaling cascades , 2012, Neuropharmacology.

[40]  M. Geyer,et al.  Psilocybin-Induced Deficits in Automatic and Controlled Inhibition are Attenuated by Ketanserin in Healthy Human Volunteers , 2012, Neuropsychopharmacology.

[41]  V. Setola,et al.  Schizophrenia risk gene CAV1 is both pro-psychotic and required for atypical antipsychotic drug actions in vivo , 2011, Translational Psychiatry.

[42]  S. Sealfon,et al.  Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists , 2011, Neuroscience Letters.

[43]  Ryan T. Strachan,et al.  p90 Ribosomal S6 kinase 2, a novel GPCR kinase, is required for growth factor-mediated attenuation of GPCR signaling. , 2010, Biochemistry.

[44]  M. Karst,et al.  The non-hallucinogen 2-bromo-lysergic acid diethylamide as preventative treatment for cluster headache: An open, non-randomized case series , 2010, Cephalalgia : an international journal of headache.

[45]  Ryan T. Strachan,et al.  Genetic Deletion of p90 Ribosomal S6 Kinase 2 Alters Patterns of 5-Hydroxytryptamine2A Serotonin Receptor Functional Selectivity , 2010, Molecular Pharmacology.

[46]  Thomas S. Ray,et al.  Psychedelics and the Human Receptorome , 2010, PloS one.

[47]  Ryan T. Strachan,et al.  Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling , 2009, Proceedings of the National Academy of Sciences.

[48]  Bryan L. Roth,et al.  Parallel Functional Activity Profiling Reveals Valvulopathogens Are Potent 5-Hydroxytryptamine2B Receptor Agonists: Implications for Drug Safety Assessment , 2009, Molecular Pharmacology.

[49]  B. Roth,et al.  Pimavanserin tartrate: a 5-HT2A inverse agonist with potential for treating various neuropsychiatric disorders , 2008 .

[50]  A. Boulares,et al.  Serotonin 5-Hydroxytryptamine2A Receptor Activation Suppresses Tumor Necrosis Factor-α-Induced Inflammation with Extraordinary Potency , 2008, Journal of Pharmacology and Experimental Therapeutics.

[51]  Graeme Milligan,et al.  Identification of a serotonin/glutamate receptor complex implicated in psychosis , 2008, Nature.

[52]  P. Franken,et al.  Possible association between 3,4-methylenedioxymethamphetamine abuse and valvular heart disease. , 2007, The American journal of cardiology.

[53]  E. sanders-Bush,et al.  Role of Gq protein in behavioral effects of the hallucinogenic drug 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane , 2007, Neuropharmacology.

[54]  B. Roth,et al.  Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand , 2007, Proceedings of the National Academy of Sciences.

[55]  Stuart C. Sealfon,et al.  Hallucinogens Recruit Specific Cortical 5-HT2A Receptor-Mediated Signaling Pathways to Affect Behavior , 2007, Neuron.

[56]  A. Deutch,et al.  p90 ribosomal S6 kinase 2 exerts a tonic brake on G protein-coupled receptor signaling. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Ryan T. Strachan,et al.  Pharmacologic analysis of non-synonymous coding h5-HT2A SNPs reveals alterations in atypical antipsychotic and agonist efficacies , 2006, The Pharmacogenomics Journal.

[58]  B. Roth,et al.  SAR of psilocybin analogs: discovery of a selective 5-HT 2C agonist. , 2005, Bioorganic & Medicinal Chemistry Letters.

[59]  C. Léránth,et al.  Short‐term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus , 2005, The European journal of neuroscience.

[60]  R. Thisted,et al.  Distinct temporal phases in the behavioral pharmacology of LSD: dopamine D2 receptor-mediated effects in the rat and implications for psychosis , 2005, Psychopharmacology.

[61]  R. Rodríguez,et al.  Quipazine, a new type of antidepressant agent , 2004, Psychopharmacologia.

[62]  B. Roth,et al.  Identification of two serine residues essential for agonist-induced 5-HT2A receptor desensitization. , 2003, Biochemistry.

[63]  V. Setola,et al.  3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. , 2003, Molecular pharmacology.

[64]  Bryan L Roth,et al.  The interaction of a constitutively active arrestin with the arrestin-insensitive 5-HT(2A) receptor induces agonist-independent internalization. , 2003, Molecular pharmacology.

[65]  V. Watts,et al.  Serotonin 5-Hydroxytryptamine2A Receptor-Coupled Phospholipase C and Phospholipase A2 Signaling Pathways Have Different Receptor Reserves , 2003, Journal of Pharmacology and Experimental Therapeutics.

[66]  M. Millan,et al.  Differential Actions of Antiparkinson Agents at Multiple Classes of Monoaminergic Receptor. III. Agonist and Antagonist Properties at Serotonin, 5-HT1 and 5-HT2, Receptor Subtypes , 2002, Journal of Pharmacology and Experimental Therapeutics.

[67]  B. Roth,et al.  Structure and Function of the Third Intracellular Loop of the 5‐Hydroxytryptamine2A Receptor: The Third Intracellular Loop Is α‐Helical and Binds Purified Arrestins , 1999, Journal of neurochemistry.

[68]  S. Maayani,et al.  Pleiotropic Behavior of 5‐HT2A and 5‐HT2C Receptor Agonists , 1998, Annals of the New York Academy of Sciences.

[69]  Andreas Bäbler,et al.  Psilocybin induces schizophrenia‐like psychosis in humans via a serotonin‐2 agonist action , 1998, Neuroreport.

[70]  P. Leff,et al.  Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. , 1998, Molecular pharmacology.

[71]  D. Nelson,et al.  Receptor subtype and density determine the coupling repertoire of the 5-HT2 receptor subfamily. , 1996, Life sciences.

[72]  M. Matsumoto,et al.  [Therapeutic effect of lisuride maleate on post-stroke depression]. , 1994, Nihon Ronen Igakkai zasshi. Japanese journal of geriatrics.

[73]  J. Axelrod,et al.  Serotonin stimulates phospholipase A2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositolphospholipid hydrolysis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[74]  R. Glennon,et al.  Iodine-125 labeled 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane: an iodinated radioligand that specifically labels the agonist high-affinity state of 5-HT2 serotonin receptors , 1988 .

[75]  C. Mathis,et al.  Binding to the serotonin 5-HT2 receptor by the enantiohers of 125I-DOI , 1987, Neuropharmacology.

[76]  D. Chuang,et al.  Characterization of Two [3H]Ketanserin Recognition Sites in Rat Striatum , 1987, Journal of neurochemistry.

[77]  J. Leysen,et al.  Non-serotonergic [3H]ketanserin binding sites in striatal membranes are associated with a dopac release system on dopaminergic nerve endings. , 1987, European journal of pharmacology.

[78]  M. Geyer,et al.  Behavioral effects of xylamine-induced depletions of brain norepinephrine: Interaction with LSD , 1985, Pharmacology Biochemistry and Behavior.

[79]  R. Glennon,et al.  Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. , 1984, Life sciences.

[80]  J. Leysen,et al.  Serotonin-S2 receptor binding sites and functional correlates , 1984, Neuropharmacology.

[81]  B. Roth,et al.  Aortic recognition sites for serotonin (5HT) are coupled to phospholipase C and modulate phosphatidylinositol turnover , 1984, Neuropharmacology.

[82]  P. Conn,et al.  Selective 5ht-2 antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex , 1984, Neuropharmacology.

[83]  A. Barnett,et al.  Quipazine-induced head-twitch in mice , 1977, Pharmacology Biochemistry and Behavior.

[84]  C. Marsden,et al.  Bromocriptine treatment in Parkinson's disease. , 1976, Journal of neurology, neurosurgery, and psychiatry.

[85]  J. Nutt,et al.  A comparison of fenfluramine and amphetamine in man , 1975, Clinical pharmacology and therapeutics.

[86]  E. Vizi,et al.  Cross-tolerance between para-bromo-methamphetamine (V-111) and LSD-25. , 1970, Pharmacology.

[87]  W. Foote,et al.  Lysergic Acid Diethylamide: Sensitive Neuronal Units in the Midbrain Raphe , 1968, Science.

[88]  S. Corne,et al.  A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. , 1963, British journal of pharmacology and chemotherapy.

[89]  J. Gaddum,et al.  Quantitative studies of antagonists for 5-hydroxytryptamine. , 1955, Quarterly journal of experimental physiology and cognate medical sciences.

[90]  D. Woolley,et al.  A BIOCHEMICAL AND PHARMACOLOGICAL SUGGESTION ABOUT CERTAIN MENTAL DISORDERS. , 1954, Proceedings of the National Academy of Sciences of the United States of America.