Invariant graphs for forced systems

[1]  H. Whitney Analytic Extensions of Differentiable Functions Defined in Closed Sets , 1934 .

[2]  H. Furstenberg,et al.  Products of Random Matrices , 1960 .

[3]  J. Kingman,et al.  The Ergodic Theory of Subadditive Stochastic Processes , 1968 .

[4]  M. Hirsch,et al.  Stable manifolds for hyperbolic sets , 1969 .

[5]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[6]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[7]  D. Aeyels GENERIC OBSERVABILITY OF DIFFERENTIABLE SYSTEMS , 1981 .

[8]  F. Takens Detecting strange attractors in turbulence , 1981 .

[9]  Subadditive mean ergodic theorems , 1981, Ergodic Theory and Dynamical Systems.

[10]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[11]  Peter C. Young,et al.  Recursive Estimation and Time-Series Analysis: An Introduction , 1984 .

[12]  J. Yorke,et al.  Strange attractors that are not chaotic , 1984 .

[13]  Gottfried Mayer-Kress,et al.  Dimensions and Entropies in Chaotic Systems , 1986 .

[14]  Peter Walters Unique ergodicity and random matrix products , 1986 .

[15]  R. Badii,et al.  On the Fractal Dimension of Filtered Chaotic Signals , 1986 .

[16]  S. T. Alexander,et al.  Adaptive Signal Processing: Theory and Applications , 1986 .

[17]  Broggi,et al.  Dimension increase in filtered chaotic signals. , 1988, Physical review letters.

[18]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[19]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[20]  Carroll,et al.  Driving systems with chaotic signals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[21]  J. Stark,et al.  Recursive prediction of chaotic time series , 1993 .

[22]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[23]  M. Davies,et al.  Recursive filters driven by chaotic signals , 1994 .

[24]  Jürgen Kurths,et al.  Strange non-chaotic attractor in a quasiperiodically forced circle map , 1995 .

[25]  A. Katok,et al.  Introduction to the Modern Theory of Dynamical Systems: Low-dimensional phenomena , 1995 .

[26]  M. Davies,et al.  The existence of inertial functions in skew product systems , 1996 .

[27]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[28]  Ott,et al.  Fractal dimensions of chaotic saddles of dynamical systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Mike E. Davies,et al.  Linear Recursive Filters and Nonlinear Dynamics , 1996 .

[30]  I. Stewart,et al.  From attractor to chaotic saddle: a tale of transverse instability , 1996 .

[31]  D. Broomhead,et al.  Takens embedding theorems for forced and stochastic systems , 1997 .

[32]  Observational noise in skew product systems , 1997 .

[33]  J. Yorke,et al.  Differentiable generalized synchronization of chaos , 1997 .