Memristive synapses connect brain and silicon spiking neurons

[1]  Shimon Marom,et al.  A Biohybrid Setup for Coupling Biological and Neuromorphic Neural Networks , 2019, Front. Neurosci..

[2]  Dong Song,et al.  Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall , 2018, Journal of neural engineering.

[3]  I. Valov,et al.  Multibit memory operation of metal-oxide bi-layer memristors , 2017, Scientific Reports.

[4]  Giacomo Indiveri,et al.  A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder , 2016, Front. Neurosci..

[5]  Ali Khiat,et al.  Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses , 2016, Nature Communications.

[6]  Alexantrou Serb,et al.  Experimental study of gradual/abrupt dynamics of HfO2-based memristive devices , 2016 .

[7]  Ali Khiat,et al.  Real-time encoding and compression of neuronal spikes by metal-oxide memristors , 2016, Nature Communications.

[8]  Mufti Mahmud,et al.  Trends and Challenges in Neuroengineering: Toward “Intelligent” Neuroprostheses through Brain-“Brain Inspired Systems” Communication , 2016, Front. Neurosci..

[9]  Ali Khiat,et al.  Emulating short-term synaptic dynamics with memristive devices , 2015, Scientific Reports.

[10]  Ali Khiat,et al.  Emulating long-term synaptic dynamics with memristive devices , 2015, ArXiv.

[11]  Giacomo Indiveri,et al.  Event-based softcore processor in a biohybrid setup applied to structural plasticity , 2015, 2015 International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP).

[12]  Matthew R Angle,et al.  Nanotechnology and neurophysiology , 2015, Current Opinion in Neurobiology.

[13]  Christos Papavassiliou,et al.  A $\mu $ -Controller-Based System for Interfacing Selectorless RRAM Crossbar Arrays , 2015, IEEE Transactions on Electron Devices.

[14]  Giacomo Indiveri,et al.  A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses , 2015, Front. Neurosci..

[15]  Charles M. Lieber,et al.  Nanoscience and the nano-bioelectronics frontier , 2015, Nano Research.

[16]  Pritish Narayanan,et al.  Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element , 2014, IEEE Transactions on Electron Devices.

[17]  G. W. Burr,et al.  Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element , 2015, 2014 IEEE International Electron Devices Meeting.

[18]  Victor Pikov,et al.  Bioelectronic medicines: a research roadmap , 2014, Nature Reviews Drug Discovery.

[19]  N. V. Thakor,et al.  Translating the Brain-Machine Interface , 2013, Science Translational Medicine.

[20]  Johannes Schemmel,et al.  A location-independent direct link neuromorphic interface , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[21]  Rafael Yuste,et al.  Nanotools for neuroscience and brain activity mapping. , 2013, ACS nano.

[22]  T. Serrano-Gotarredona,et al.  STDP and STDP variations with memristors for spiking neuromorphic learning systems , 2013, Front. Neurosci..

[23]  M. Spira,et al.  Multi-electrode array technologies for neuroscience and cardiology. , 2013, Nature nanotechnology.

[24]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[25]  Mark F. Bear,et al.  The BCM theory of synapse modification at 30: interaction of theory with experiment , 2012, Nature Reviews Neuroscience.

[26]  Mufti Mahmud,et al.  On the Way to Large-Scale and High-Resolution Brain-Chip Interfacing , 2012, Cognitive Computation.

[27]  Hannes Bleuler,et al.  Active tactile exploration enabled by a brain-machine-brain interface , 2011, Nature.

[28]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[29]  M. Maschietto,et al.  Stimulation of Ca2+ signals in neurons by electrically coupled electrolyte-oxide-semiconductor capacitors , 2011, Journal of Neuroscience Methods.

[30]  David Vernon,et al.  Research road map , 2010 .

[31]  Giacomo Indiveri,et al.  A current-mode conductance-based silicon neuron for address-event neuromorphic systems , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[32]  Giacomo Indiveri,et al.  Real-Time Classification of Complex Patterns Using Spike-Based Learning in Neuromorphic VLSI , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[33]  P. Fromherz,et al.  Extracellular stimulation of mammalian neurons through repetitive activation of Na+ channels by weak capacitive currents on a silicon chip. , 2008, Journal of neurophysiology.

[34]  Shih-Chii Liu,et al.  Modeling Short-Term Synaptic Depression in Silicon , 2003, Neural Computation.

[35]  J. Trimmer,et al.  Dynamic localization and clustering of dendritic Kv2.1 voltage-dependent potassium channels in developing hippocampal neurons , 2001, Neuroscience.

[36]  Rodney J. Douglas,et al.  A pulse-coded communications infrastructure for neuromorphic systems , 1999 .

[37]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.