Comparison theorems for curves of bounded geodesic curvature in metric spaces of curvature bounded above

Comparison and rigidity theorems are proved for curves of bounded geodesic curvature in singular spaes of curvature bounded above. Most of these estimates do not appear in the literature even for smooth curves in Riemannian manifolds. Geodesic curvature (which agrees with the usual one in the smooth case) is defined by comparison to curves of constant curvature in a model space. Two methods of comparison are used, preserving either sidelengths of inscribed triangles or arclength and chordlength. Using a majorization theorem of Reshetnyak, we obtain best possible global comparisons for arclength, chordlength, width and base angles in a CAT(K) space. A criterion for a metric ball to be a CAT(K) space is also given, in terms of the radius and the radial uniqueness property.

[1]  M. Bridson ON THE EXISTENCE OF AT PLANES IN SPACES OF NONPOSITIVE CURVATURE , 1995 .

[2]  Yu. G. Reshetnyak Inextensible mappings in a space of curvature no greater than K , 1968 .

[3]  H. Karcher Schnittort und konvexe Mengen in vollständigen Riemannschen Mannigfaltigkeiten , 1968 .

[4]  Olli Lehto Proceedings of the International Congress of Mathematicians : Helsinki, 1978 , 1980 .

[5]  M. Gromov,et al.  Hyperbolic Manifolds, Groups and Actions , 1981 .

[6]  P. Buser,et al.  Gromov's almost flat manifolds , 1981 .

[7]  A. Aleksandrov,et al.  General theory of irregular curves , 1989 .

[8]  J. Haantjes A Characteristic Local Property of Geodesics in Certain Metric Spaces , 1951 .

[9]  K. Menger,et al.  Untersuchungen über allgemeine Metrik. Vierte Untersuchung. Zur Metrik der Kurven , 1930 .

[10]  M. Gromov,et al.  Manifolds of Nonpositive Curvature , 1985 .

[11]  Stephanie B. Alexander,et al.  Geometric curvature bounds in Riemannian manifolds with boundary , 1993 .

[12]  T. Bonnesen,et al.  Theorie der Konvexen Körper , 1934 .

[13]  Graham A. Niblo,et al.  Asymptotic invariants of infinite groups , 1993 .

[14]  Jürgen Jost Eine geometrische Bemerkung zu Sätzen über harmonische Abbildungen, die ein Dirichletproblem lösen , 1980 .

[15]  B. V. Dekster The length of a curve in a space of curvature , 1980 .

[16]  Werner Ballmann,et al.  Lectures on Spaces of Nonpositive Curvature , 1995 .

[17]  A convergence theorem for Riemannian submanifolds , 1995 .

[18]  Stephanie B. Alexander,et al.  The Riemannian obstacle problem , 1987 .

[19]  K. Menger Untersuchungen über allgemeine Metrik , 1928 .

[20]  Umkreise und Inkreise konvexer Kurven in der sphärischen und der hyperbolischen Geometrie , 1968 .

[21]  Werner Ballmann,et al.  Singular Spaces of Non-Positive Curvature , 1990 .