Bias-Aware Confidence Intervals for Empirical Bayes Analysis
暂无分享,去创建一个
[1] Ananda Theertha Suresh,et al. Sample complexity of population recovery , 2017, COLT.
[2] I. Ibragimov,et al. On Nonparametric Estimation of the Value of a Linear Functional in Gaussian White Noise , 1985 .
[3] Cun-Hui Zhang. Fourier Methods for Estimating Mixing Densities and Distributions , 1990 .
[4] Sanford Weisberg,et al. Computing science and statistics : proceedings of the 30th Symposium on the Interface, Minneapolis, Minnesota, May 13-16, 1998 : dimension reduction, computational complexity and information , 1998 .
[5] Dimitris N. Politis,et al. On a family of smoothing kernels of in nite order , 2022 .
[6] Peter D. Hoff,et al. Adaptive sign error control , 2017, Journal of Statistical Planning and Inference.
[7] M. Reiß,et al. Wasserstein and total variation distance between marginals of L\'evy processes , 2017, 1710.02715.
[8] Bernard W. Silverman,et al. Discretization effects in statistical inverse problems , 1991, J. Complex..
[9] J. Zubizarreta. Stable Weights that Balance Covariates for Estimation With Incomplete Outcome Data , 2015 .
[10] T. Cai,et al. Minimax estimation of linear functionals over nonconvex parameter spaces , 2004, math/0406427.
[11] Adel Javanmard,et al. Confidence intervals and hypothesis testing for high-dimensional regression , 2013, J. Mach. Learn. Res..
[12] C. Morris. Parametric Empirical Bayes Confidence Intervals , 1983 .
[13] William Fithian,et al. Statistical methods for replicability assessment , 2019, The Annals of Applied Statistics.
[14] Iain Dunning,et al. JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..
[15] Alexander Peysakhovich,et al. Improving pairwise comparison models using Empirical Bayes shrinkage , 2018, ArXiv.
[16] T. Shakespeare,et al. Observational Studies , 2003 .
[17] Matthew Stephens,et al. False discovery rates: a new deal , 2016, bioRxiv.
[18] Joseph G Ibrahim,et al. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences , 2018, bioRxiv.
[19] W. Huber,et al. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.
[20] David L. Donoho,et al. Hardest One-Dimensional Subproblems , 2008 .
[21] Timothy B. Armstrong,et al. Optimal Inference in a Class of Regression Models , 2015, 1511.06028.
[22] L. Devroye. A Note on the Usefulness of Superkernels in Density Estimation , 1992 .
[23] Roger Koenker,et al. Unobserved Heterogeneity in Income Dynamics: An Empirical Bayes Perspective , 2014 .
[24] Clifford B. Cordy,et al. Deconvolution of a Distribution Function , 1997 .
[25] Gordon K Smyth,et al. Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2004, Statistical applications in genetics and molecular biology.
[26] H. Robbins. An Empirical Bayes Approach to Statistics , 1956 .
[27] Timothy B. Armstrong,et al. Sensitivity Analysis using Approximate Moment Condition Models , 2018, Quantitative Economics.
[28] I. Johnstone,et al. Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences , 2004, math/0410088.
[29] E. Lander,et al. Gene expression correlates of clinical prostate cancer behavior. , 2002, Cancer cell.
[30] I. Dattner,et al. ON DECONVOLUTION OF DISTRIBUTION FUNCTIONS , 2010, 1006.3918.
[31] Stefan Wager,et al. Covariate-Powered Empirical Bayes Estimation , 2019, NeurIPS.
[32] R. Koenker,et al. CONVEX OPTIMIZATION, SHAPE CONSTRAINTS, COMPOUND DECISIONS, AND EMPIRICAL BAYES RULES , 2013 .
[33] A. Juditsky,et al. Nonparametric estimation by convex programming , 2009, 0908.3108.
[34] Dahua Lin,et al. Distributions.jl: Definition and Modeling of Probability Distributions in the JuliaStats Ecosystem , 2019, J. Stat. Softw..
[35] Paul Deheuvels,et al. Uniform Limit Laws for Kernel Density Estimators on Possibly Unbounded Intervals , 2000 .
[36] Bradley Efron,et al. Two modeling strategies for empirical Bayes estimation. , 2014, Statistical science : a review journal of the Institute of Mathematical Statistics.
[37] Lawrence D. Brown,et al. The Poisson Compound Decision Problem Revisited , 2010, 1006.4582.
[38] Arlene K. H. Kim. Minimax bounds for estimation of normal mixtures , 2011, 1112.4565.
[39] Jianqing Fan. On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .
[40] Francis Tuerlinckx,et al. Type S error rates for classical and Bayesian single and multiple comparison procedures , 2000, Comput. Stat..
[41] Stephen P. Boyd,et al. ECOS: An SOCP solver for embedded systems , 2013, 2013 European Control Conference (ECC).
[42] E. Candès,et al. A knockoff filter for high-dimensional selective inference , 2016, The Annals of Statistics.
[43] D. Donoho,et al. Geometrizing Rates of Convergence, III , 1991 .
[44] Mark G. Low. Bias-Variance Tradeoffs in Functional Estimation Problems , 1995 .
[45] Bradley Efron,et al. deconvolveR: A G-Modeling Program for Deconvolution and Empirical Bayes Estimation , 2020, Journal of Statistical Software.
[46] Alberto Abadie,et al. Choosing among Regularized Estimators in Empirical Economics: The Risk of Machine Learning , 2019, Review of Economics and Statistics.
[47] C. Stein,et al. Estimation with Quadratic Loss , 1992 .
[48] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[49] Wenhua Jiang,et al. General maximum likelihood empirical Bayes estimation of normal means , 2009, 0908.1709.
[50] Bradley Efron,et al. Empirical Bayes deconvolution estimates , 2016 .
[51] Yuya Sasaki,et al. Inference based on Kotlarski's Identity , 2018, 1808.09375.
[52] S. Zeger,et al. A Smooth Nonparametric Estimate of a Mixing Distribution Using Mixtures of Gaussians , 1996 .
[53] M. Nussbaum. Asymptotic Equivalence of Density Estimation and Gaussian White Noise , 1996 .
[54] J. Robins,et al. Adaptive nonparametric confidence sets , 2006, math/0605473.
[55] B. Efron,et al. Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .
[56] D. Donoho. Statistical Estimation and Optimal Recovery , 1994 .
[57] V. Genon-Catalot,et al. Laguerre and Hermite bases for inverse problems , 2018, Journal of the Korean Statistical Society.
[58] Stefan Wager,et al. Debiased Inference of Average Partial Effects in Single-Index Models , 2018, 1811.02547.
[59] C. Matias,et al. MINIMAX ESTIMATION OF LINEAR FUNCTIONALS IN THE CONVOLUTION MODEL , 2004 .
[60] Yoav Zemel,et al. Statistical Aspects of Wasserstein Distances , 2018, Annual Review of Statistics and Its Application.
[61] Y. Benjamini,et al. False Discovery Rate–Adjusted Multiple Confidence Intervals for Selected Parameters , 2005 .
[62] Marianna Pensky,et al. Minimax theory of estimation of linear functionals of the deconvolution density with or without sparsity , 2014, 1411.1660.
[63] F. Comte,et al. Adaptive estimation of linear functionals in the convolution model and applications , 2009, 0902.1443.
[64] Stefan Wager,et al. Augmented minimax linear estimation , 2017, The Annals of Statistics.
[65] B. Efron. Tweedie’s Formula and Selection Bias , 2011, Journal of the American Statistical Association.
[66] Stefan Wager,et al. Optimized Regression Discontinuity Designs , 2017, Review of Economics and Statistics.
[67] F. Götze,et al. The Berry-Esseen bound for student's statistic , 1996 .
[68] Nathan Kallus,et al. Generalized Optimal Matching Methods for Causal Inference , 2016, J. Mach. Learn. Res..
[69] E. Giné,et al. Rates of strong uniform consistency for multivariate kernel density estimators , 2002 .
[70] D. Yekutieli,et al. Selective Sign-Determining Multiple Confidence Intervals with FCR Control , 2014, Statistica Sinica.
[71] Art B. Owen. Confidence intervals with control of the sign error in low power settings , 2016 .
[72] Christian P. Robert,et al. Large-scale inference , 2010 .
[73] D. Donoho. One-sided inference about functionals of a density , 1988 .
[74] O. Sacko,et al. Hermite density deconvolution , 2020, Latin American Journal of Probability and Mathematical Statistics.
[75] David A. Hirshberg,et al. Balancing Out Regression Error: Efficient Treatment Effect Estimation without Smooth Propensities , 2017 .
[76] F. Comte,et al. Sobolev-Hermite versus Sobolev nonparametric density estimation on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ , 2017, Annals of the Institute of Statistical Mathematics.
[77] T. Tony Cai,et al. A note on nonparametric estimation of linear functionals , 2003 .
[78] G. Imbens,et al. Approximate residual balancing: debiased inference of average treatment effects in high dimensions , 2016, 1604.07125.
[79] Zhuang Ma,et al. Group-Linear Empirical Bayes Estimates for a Heteroscedastic Normal Mean , 2015, 1503.08503.
[80] Raj Chetty,et al. The Impacts of Neighborhoods on Intergenerational Mobility Ii: County-Level Estimates , 2016 .
[81] Paul Deheuvels,et al. Asymptotic Certainty Bands for Kernel Density Estimators Based upon a Bootstrap Resampling Scheme , 2008 .
[82] Lawrence D. Brown,et al. NONPARAMETRIC EMPIRICAL BAYES AND COMPOUND DECISION APPROACHES TO ESTIMATION OF A HIGH-DIMENSIONAL VECTOR OF NORMAL MEANS , 2009, 0908.1712.
[83] Alan Edelman,et al. Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..
[84] B. Efron,et al. Data Analysis Using Stein's Estimator and its Generalizations , 1975 .
[85] Charles F. Manski,et al. Confidence Intervals for Partially Identified Parameters , 2003 .
[86] John D. Storey,et al. Empirical Bayes Analysis of a Microarray Experiment , 2001 .
[87] J. Johannes. DECONVOLUTION WITH UNKNOWN ERROR DISTRIBUTION , 2007, 0705.3482.
[88] Bradley Efron,et al. Bayes, Oracle Bayes and Empirical Bayes , 2019, Statistical Science.
[89] T. Louis,et al. Empirical Bayes Confidence Intervals Based on Bootstrap Samples , 1987 .
[90] J. Torrea,et al. Sobolev spaces associated to the harmonic oscillator , 2006, math/0608684.