Experimental evaluation of a shape memory alloy wire actuator with a modulated adaptive controller for position control

This paper presents an experimental investigation of position control of a shape memory alloy (SMA) wire actuator with adaptive and modulated adaptive controllers. The transfer function model of the SMA wire actuator is determined from the experimental open loop response. Adaptive controllers, namely LMS–GSPI, RLS–GSPI and Kalman–GSPI, and modulated adaptive controllers using pulse width modulation (PWM) are designed. The performances of these controllers are experimentally investigated for the position control of an SMA wire actuator with and without thermal disturbance. Experimental results demonstrate that the modulated adaptive controllers outperform adaptive controllers.

[1]  G. Song,et al.  Control of shape memory alloy actuator using pulse width modulation , 2003 .

[2]  David W. L. Wang,et al.  General stability criteria for a shape memory alloy position control system , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[3]  Gangbing Song,et al.  Robust control of a shape memory alloy wire actuated flap , 2007 .

[4]  Shawn Bourdo,et al.  Energy efficient graphite–polyurethane electrically conductive coatings for thermally actuated smart materials , 2007 .

[5]  Niclas Sundqvist Multivariable feedback control of electromagnetic reluctance force actuators , 2009 .

[6]  Gangbing Song,et al.  Application of shape memory alloy wire actuator for precision position control of a composite beam , 2000 .

[7]  Stephen A. Mascaro,et al.  Dynamic Thermomechanical Modeling of a Wet Shape Memory Alloy Actuator , 2010 .

[8]  Kalervo Nevala,et al.  Comparison of position control algorithms of embedded shape memory alloy actuators , 2009, 2009 IEEE International Conference on Mechatronics.

[9]  Sylvain Calloch,et al.  Experimental comparison of classical PID and model-free control: Position control of a shape memory alloy active spring , 2011 .

[10]  S. Hirose,et al.  Mathematical model and experimental verification of shape memory alloy for designing micro actuator , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[11]  O.P. Malik,et al.  RLS and Kalman Filter Identifiers Based Adaptive SVC Controller , 2007, 2007 39th North American Power Symposium.

[12]  V. Etxebarria,et al.  Micropositioning control using shape memory alloys , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[13]  Nguyen Trong Tai,et al.  Adaptive proportional?integral?derivative tuning sliding mode control for a shape memory alloy actuator , 2011 .

[14]  Vincent Hayward,et al.  Variable structure control of shape memory alloy actuators , 1997 .

[15]  Vladimir Brailovski,et al.  Temporal characteristics of shape memory linear actuators and their application to circuit breakers , 1996 .

[16]  A.G. Alleyne,et al.  Modeling and control for smart Mesoflap aeroelastic control , 2004, IEEE/ASME Transactions on Mechatronics.

[17]  Igi Ardiyanto Task Oriented Behavior-Based State-Adaptive PID (Proportional Integral Derivative) Control for Low-Cost Mobile Robot , 2010, 2010 Second International Conference on Computer Engineering and Applications.

[18]  G. Song,et al.  Control of Shape Memory Alloy Actuators Using Pulse-Width Pulse-Frequency (PWPF) Modulation , 2003 .

[19]  D. Dane Quinn,et al.  Experimental Study of the Robust Tracking Control of a Shape Memory Alloy Wire Actuator , 2004 .

[20]  Jia-Yush Yen,et al.  Tracking Control of Shape-Memory-Alloy Actuators Based on Self-Sensing Feedback and Inverse Hysteresis Compensation , 2009, Sensors.

[21]  Seung-Bok Choi,et al.  Force tracking control of a flexible gripper featuring shape memory alloy actuators , 2001 .

[22]  J. B. Dabney,et al.  Modeling and Control of a Shape Memory Alloy Actuator , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[23]  Kevin A. Snook,et al.  縦方向電界場中で曲げたPIN-PMN-PT単結晶の強度 , 2011 .