A multinomial probit model of stochastic evolution
暂无分享,去创建一个
[1] F. Vega-Redondo. The evolution of Walrasian behavior , 1997 .
[2] David P. Myatt,et al. Adaptive play by idiosyncratic agents , 2004, Games Econ. Behav..
[3] J. Yorke,et al. Basins of Attraction , 1996, Science.
[4] Reinhard Selten,et al. A general theory of equilibrium selection in games. Chapter 3: Consequence of desirable properties , 1982 .
[5] Barton L. Lipman,et al. Evolution with State-Dependent Mutations , 1996 .
[6] G. Grimmett,et al. Probability and random processes , 2002 .
[7] H. Young,et al. The Evolution of Conventions , 1993 .
[8] Stephen Morris,et al. P-dominance and belief potential , 2010 .
[9] M. Freidlin,et al. Random Perturbations of Dynamical Systems , 1984 .
[10] John C. Harsanyi,et al. Общая теория выбора равновесия в играх / A General Theory of Equilibrium Selection in Games , 1989 .
[11] Glenn Ellison. Basins of Attraction, Long-Run Stochastic Stability, and the Speed of Step-by-Step Evolution , 2000 .
[12] J. Harsanyi. Games with randomly disturbed payoffs: A new rationale for mixed-strategy equilibrium points , 1973 .
[13] Peter Secretan. Learning , 1965, Mental Health.
[14] Lawrence E. Blume,et al. How noise matters , 2003, Games Econ. Behav..
[15] Toshimasa Maruta,et al. On the Relationship Between Risk-Dominance and Stochastic Stability , 1997 .
[16] Paul A. Ruud,et al. Approximation and Simulation of the Multinomial Probit Model : An Analysis of Covariance Matrix Estimation , 1996 .
[17] R. Rob,et al. Learning, Mutation, and Long Run Equilibria in Games , 1993 .