Linear Closed-Loop Control of Fluid Instabilities and Noise-Induced Perturbations: A Review of Approaches and Tools

This review article is concerned with the design of linear reduced-order models and control laws for closed-loop control of instabilities in transitional flows. For oscillator flows, such as open-cavity flows, we suggest the use of optimal control techniques with Galerkin models based on unstable global modes and balanced modes. Particular attention has to be paid to stability–robustness properties of the control law. Specifically, we show that large delays and strong amplification between the control input and the estimation sensor may be detrimental both to performance and robustness. For amplifier flows, such as backward-facing step flow, the requirement to account for the upstream disturbance environment rules out Galerkin models. In this case, an upstream sensor is introduced to detect incoming perturbations, and identification methods are used to fit a model structure to available input–output data. Control laws, obtained by direct inversion of the input–output relations, are found to be robust when applied to the large-scale numerical simulation. All the concepts are presented in a step-by-step manner, and numerical codes are provided for the interested reader. [DOI: 10.1115/1.4033345]

[1]  Pierre Apkarian,et al.  Nonsmooth H∞ synthesis , 2005, IEEE Trans. Autom. Control..

[2]  Dan S. Henningson,et al.  Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows , 2009 .

[3]  Gilead Tadmor,et al.  On the need of nonlinear control for efficient model-based wake stabilization , 2014 .

[4]  David E. Cox,et al.  Experimental Feedback Control of Flow-Induced Cavity Tones , 2002 .

[5]  Marco Debiasi,et al.  Experimental Study of Linear Closed-Loop Control of Subsonic Cavity Flow , 2006 .

[6]  Peter J. Schmid,et al.  Closed-loop control of an open cavity flow using reduced-order models , 2009, Journal of Fluid Mechanics.

[7]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[8]  Arthur Gelb,et al.  Multiple-Input Describing Functions and Nonlinear System Design , 1968 .

[9]  Jason L. Speyer,et al.  Skin-friction Drag Reduction Via Robust Reduced-order Linear Feedback Control , 1998 .

[10]  Thomas Bewley,et al.  Performance of a linear robust control strategy on a nonlinear model of spatially developing flows , 2004, Journal of Fluid Mechanics.

[11]  Roger Temam,et al.  DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms , 2001, Journal of Fluid Mechanics.

[12]  P. Schmid,et al.  Nonlinear Model-order Reduction for Oscillator Flows Using POD-DEIM☆ , 2013 .

[13]  Clarence W. Rowley,et al.  Feedback control of flow resonances using balanced reduced-order models , 2011 .

[14]  Franck Nicoud,et al.  ACTIVE CONTROL OF AN UNSTEADY FLOW OVER A RECTANGULAR CAVITY , 1998 .

[15]  N. Gautier,et al.  Feed-forward control of a perturbed backward-facing step flow , 2014, Journal of Fluid Mechanics.

[16]  D. Michaelis,et al.  Tomographic PIV measurements in a turbulent lifted jet flame , 2013 .

[17]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[18]  Adrian Sandu,et al.  POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation , 2014, J. Comput. Phys..

[19]  Matthew A. Franchek,et al.  Active control of pressure fluctuations due to flow over Helmholtz resonators , 2002 .

[20]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[21]  John C. Doyle,et al.  Guaranteed margins for LQG regulators , 1978 .

[22]  N. Fabbiane,et al.  Adaptive and Model-Based Control Theory Applied to Convectively Unstable Flows , 2014, 1402.1746.

[23]  Peter J. Schmid,et al.  Control of amplifier flows using subspace identification techniques , 2013, Journal of Fluid Mechanics.

[24]  M. Gharib Response of the cavity shear layer oscillations to external forcing , 1985 .

[25]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[26]  Ian R. Petersen,et al.  Robust control of uncertain systems: Classical results and recent developments , 2014, Autom..

[27]  J. Robinet,et al.  Nonlinear control of unsteady finite-amplitude perturbations in the Blasius boundary-layer flow , 2013, Journal of Fluid Mechanics.

[28]  Laurent Cordier,et al.  Control of the cylinder wake in the laminar regime by Trust-Region methods and POD Reduced Order Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[29]  Isaac Horowitz,et al.  Quantitative feedback design theory : QFT , 1993 .

[30]  Charles-Henri Bruneau,et al.  Enablers for robust POD models , 2009, J. Comput. Phys..

[31]  B. R. Noack,et al.  Closed-Loop Turbulence Control: Progress and Challenges , 2015 .

[32]  Bernd R. Noack,et al.  Identification strategies for model-based control , 2013 .

[33]  Lars Henning,et al.  Robust Multivariable Closed-Loop Control of a Turbulent Backward-Facing Step Flow , 2007 .

[34]  Thomas Bewley,et al.  A Linear Systems Approach to Flow Control , 2007 .

[35]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[36]  Juan GUZMAN INIGO Estimation and control of noise amplifier flows using data-based approaches , 2015 .

[37]  J. Juang Applied system identification , 1994 .

[38]  H. Bau,et al.  Limitations of linear control of thermal convection in a porous medium , 2006 .

[39]  P. Sagaut,et al.  Calibrated reduced-order POD-Galerkin system for fluid flow modelling , 2005 .

[40]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[41]  H. Kwakernaak,et al.  The maximally achievable accuracy of linear optimal regulators and linear optimal filters , 1972 .

[42]  Jean-Luc Aider,et al.  Closed-loop separation control using machine learning , 2014, Journal of Fluid Mechanics.

[43]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[44]  Peter J. Schmid,et al.  Experimental control of natural perturbations in channel flow , 2014, Journal of Fluid Mechanics.

[45]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[46]  Steven L. Brunton,et al.  State-space model identification and feedback control of unsteady aerodynamic forces , 2014, 1401.1473.

[47]  Jason L. Speyer,et al.  Robust reduced-order control of turbulent channel flows via distributed sensors and actuators , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[48]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[49]  P. Schmid,et al.  Uncertainty propagation in model extraction by system identification and its implication for control design , 2016, Journal of Fluid Mechanics.

[50]  Peter J. Schmid,et al.  A dynamic observer to capture and control perturbation energy in noise amplifiers , 2014, Journal of Fluid Mechanics.

[51]  Robert King,et al.  Robust control of separated shear flows in simulation and experiment , 2005 .

[52]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[53]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[54]  Thomas Bewley,et al.  Optimal and robust control and estimation of linear paths to transition , 1998, Journal of Fluid Mechanics.

[55]  M. Kawahara,et al.  Stable Shape Identification for Fluid-Structure Interaction Problem Using MINI Element , 2000 .

[56]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[57]  J. Freund,et al.  A noise-controlled free shear flow , 2005, Journal of Fluid Mechanics.

[58]  Jason L. Speyer,et al.  Application of reduced-order controller to turbulent flows for drag reduction , 2001 .

[59]  B. R. Noack,et al.  Feedback shear layer control for bluff body drag reduction , 2008, Journal of Fluid Mechanics.

[60]  Paul Van Dooren,et al.  H2-optimal model reduction of MIMO systems , 2008, Appl. Math. Lett..

[61]  Denis Sipp,et al.  Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows , 2007, Journal of Fluid Mechanics.

[62]  Louis Roder Tcheugoué Tébou,et al.  Adjoint-Based Iterative Method for Robust Control Problems in Fluid Mechanics , 2004, SIAM J. Numer. Anal..

[63]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[64]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[65]  T. T. Medjo Robust control problems in fluid mechanics , 2001 .

[66]  Hiroshi Naito,et al.  Active control of vortex shedding: an explanation of the gain window. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  M. Franchek,et al.  Active control of flow-induced cavity resonance , 1998 .

[68]  Clarence W. Rowley,et al.  H2 optimal actuator and sensor placement in the linearised complex Ginzburg–Landau system , 2010, Journal of Fluid Mechanics.

[69]  David Williams,et al.  Adaptive control of multiple acoustic modes in cavities , 2001 .

[70]  Michael J. Rossi,et al.  Hydrodynamics and Nonlinear Instabilities: Hydrodynamic instabilities in open flows , 1998 .

[71]  M. Gad-el-Hak The MEMS Handbook , 2001 .

[72]  John Kim,et al.  Control and system identification of a separated flow , 2008 .

[73]  D. Henningson,et al.  Input–output analysis, model reduction and control of the flat-plate boundary layer , 2009, Journal of Fluid Mechanics.

[74]  Clarence W. Rowley,et al.  Active control of flow-induced cavity oscillations , 2008 .

[75]  Clarence W. Rowley,et al.  MODEL-BASED CONTROL OF CAVITY OSCILLATIONS, PART II: SYSTEM IDENTIFICATION AND ANALYSIS , 2002 .

[76]  Ronald D. Joslin,et al.  Issues in active flow control: theory, control, simulation, and experiment , 2004 .

[77]  Peter J. Schmid,et al.  Closed-loop control of unsteadiness over a rounded backward-facing step , 2012, Journal of Fluid Mechanics.

[78]  Roger Temam,et al.  A general framework for robust control in fluid mechanics , 2000 .

[79]  S. Sherwin,et al.  Convective instability and transient growth in flow over a backward-facing step , 2007, Journal of Fluid Mechanics.

[80]  Clarence W. Rowley,et al.  Model-based control of cavity oscillations: Part 1: Experiments , 2002 .

[81]  Serkan Gugercin,et al.  H2 Model Reduction for Large-Scale Linear Dynamical Systems , 2008, SIAM J. Matrix Anal. Appl..

[82]  Jeffrey B. Burl,et al.  Linear Optimal Control , 1998 .

[83]  Clarence W. Rowley,et al.  Reduced-order models for control of fluids using the eigensystem realization algorithm , 2008, 0907.1907.

[84]  L. Cordier,et al.  Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model , 2005 .

[85]  Y S J O S H I,et al.  A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow , 1997 .

[86]  Peter J. Schmid,et al.  A physics-based approach to flow control using system identification , 2012, Journal of Fluid Mechanics.

[87]  C. Poussot-Vassal,et al.  Parametric reduced order dynamical model construction of a fluid flow control problem , 2015 .

[88]  Clarence W. Rowley,et al.  Feedback control of cavity flow oscillations using simple linear models , 2012, Journal of Fluid Mechanics.

[89]  Dan S. Henningson,et al.  On the role of adaptivity for robust laminar flow control , 2015, Journal of Fluid Mechanics.

[90]  G. Vinnicombe Uncertainty and Feedback: 8 loop-shaping and the-gap metric , 2000 .

[91]  A. Bottaro,et al.  Optimal and robust control of streaks in pipe flow , 2005, Journal of Fluid Mechanics.

[92]  E. A. Gillies Low-dimensional control of the circular cylinder wake , 1998, Journal of Fluid Mechanics.

[93]  Athanasios C. Antoulas,et al.  Data-Driven Parametrized Model Reduction in the Loewner Framework , 2014, SIAM J. Sci. Comput..

[94]  William S. Saric,et al.  BOUNDARY-LAYER RECEPTIVITY TO FREESTREAM DISTURBANCES , 2002 .

[95]  Gérard Dreyfus,et al.  Apprentissage statistique : Réseaux de neurones - Cartes topologiques - Machines à vecteurs supports , 2008 .

[96]  P. Meliga,et al.  Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach , 2010 .

[97]  Ruben Rathnasingham,et al.  Active control of turbulent boundary layers , 2003, Journal of Fluid Mechanics.

[98]  E. Yaz,et al.  Linear optimal control, H2 and H∞ methods, by Jeffrey B. Burl, Addison Wesley Longman, Inc. Menlo Park, CA, 1999 , 2000 .

[99]  Kimon Roussopoulos,et al.  Nonlinear modelling of vortex shedding control in cylinder wakes , 1996 .

[100]  Louis N. Cattafesta,et al.  Active Control of Flow-Induced Cavity Resonance , 1997 .

[101]  Peter J. Schmid,et al.  Input–output measures for model reduction and closed-loop control: application to global modes , 2011, Journal of Fluid Mechanics.

[102]  Dan S. Henningson,et al.  Feedback control of instabilities in the two-dimensional Blasius boundary layer : The role of sensors and actuators , 2013 .

[103]  Thomas Bewley,et al.  Flow control: new challenges for a new Renaissance , 2001 .

[104]  C. Rowley,et al.  Modeling of transitional channel flow using balanced proper orthogonal decomposition , 2007, 0707.4112.

[105]  Simone Zuccher,et al.  Algebraic growth in a Blasius boundary layer: optimal and robust control by mean suction in the nonlinear regime , 2004, Journal of Fluid Mechanics.

[106]  C. Rowley,et al.  Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators , 2009, Journal of Fluid Mechanics.

[107]  Pierre Apkarian,et al.  Erratum to "Nonsmooth H∞ Synthesis" , 2006, IEEE Trans. Autom. Control..

[108]  A. Serrani,et al.  Feedback control of subsonic cavity flows using reduced-order models , 2007, Journal of Fluid Mechanics.

[109]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[110]  Louis N. Cattafesta,et al.  Adaptive Identification and Control of Flow-Induced Cavity Oscillations , 2002 .

[111]  P. Schmid Nonmodal Stability Theory , 2007 .

[112]  W. Nitsche,et al.  On active control of laminar–turbulent transition on two-dimensional wings , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[113]  A. Laub,et al.  Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms , 1987 .

[114]  David R. Williams,et al.  Linear models for control of cavity flow oscillations , 2006, Journal of Fluid Mechanics.

[115]  Aimee S. Morgans,et al.  Feedback control for form-drag reduction on a bluff body with a blunt trailing edge , 2012, Journal of Fluid Mechanics.

[116]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[117]  Gilead Tadmor,et al.  Nonlinear flow control based on a low dimensional model of fluid flow , 2005 .