Coordinated bi-directional trafficking of synaptic vesicle and active zone proteins in peripheral nerves.

[1]  R. Lipowsky,et al.  Presynaptic Biogenesis Requires Axonal Transport of Lysosome-Related Vesicles , 2018, Neuron.

[2]  J. Rizo,et al.  RIM C2B Domains Target Presynaptic Active Zone Functions to PIP2-Containing Membranes , 2018, Neuron.

[3]  P. Kaeser,et al.  Liprin-α3 controls vesicle docking and exocytosis at the active zone of hippocampal synapses , 2018, Proceedings of the National Academy of Sciences.

[4]  N. Ziv Maintaining the active zone: Demand, supply and disposal of core active zone proteins , 2017, Neuroscience Research.

[5]  J. Fitzpatrick,et al.  HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification , 2017, Molecular biology of the cell.

[6]  C. Soeller,et al.  Cellular and Molecular Anatomy of the Human Neuromuscular Junction , 2017, Cell reports.

[7]  Ramiro D. Almeida,et al.  The proteasome controls presynaptic differentiation through modulation of an on-site pool of polyubiquitinated conjugates , 2016, The Journal of cell biology.

[8]  S. Schoch,et al.  CASK stabilizes neurexin and links it to liprin-α in a neuronal activity-dependent manner , 2016, Cellular and Molecular Life Sciences.

[9]  A. Schmidt,et al.  Reduced expression of Munc13-1 in human and porcine diabetic peripheral nerve. , 2014, Acta histochemica.

[10]  Mark Ellisman,et al.  Liprin-α/SYD-2 determines the size of dense projections in presynaptic active zones in C. elegans , 2013, The Journal of cell biology.

[11]  A. Schmidt,et al.  Impaired slow axonal transport in diabetic peripheral nerve is independent of RAGE , 2013, The European journal of neuroscience.

[12]  R. Jahn,et al.  Active zone protein expression changes at the key stages of cerebellar cortex neurogenesis in the rat. , 2013, Acta histochemica.

[13]  N. Ziv,et al.  Formation of Golgi-Derived Active Zone Precursor Vesicles , 2012, The Journal of Neuroscience.

[14]  T. Südhof The Presynaptic Active Zone , 2012, Neuron.

[15]  U. Das,et al.  Mechanistic Logic Underlying the Axonal Transport of Cytosolic Proteins , 2011, Neuron.

[16]  S. Sabo,et al.  Coordinated trafficking of synaptic vesicle and active zone proteins prior to synapse formation , 2011, Neural Development.

[17]  Thomas C. Südhof,et al.  RIM Proteins Activate Vesicle Priming by Reversing Autoinhibitory Homodimerization of Munc13 , 2011, Neuron.

[18]  T. Südhof,et al.  RIM Determines Ca2+ Channel Density and Vesicle Docking at the Presynaptic Active Zone , 2011, Neuron.

[19]  T. Südhof,et al.  Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis , 2010, Proceedings of the National Academy of Sciences.

[20]  J. Schymkowitz,et al.  Structural Diversity of PDZ–Lipid Interactions , 2010, Chembiochem : a European journal of chemical biology.

[21]  N. Ziv,et al.  Dynein light chain regulates axonal trafficking and synaptic levels of Bassoon , 2009, The Journal of cell biology.

[22]  D. Ress,et al.  Macromolecular connections of active zone material to docked synaptic vesicles and presynaptic membrane at neuromuscular junctions of mouse , 2009, The Journal of comparative neurology.

[23]  K. Harris,et al.  Dense core vesicles resemble active-zone transport vesicles and are diminished following synaptogenesis in mature hippocampal slices , 2006, Neuroscience.

[24]  Nils Brose,et al.  Molecular Dynamics of a Presynaptic Active Zone Protein Studied in Munc13-1–Enhanced Yellow Fluorescent Protein Knock-In Mutant Mice , 2006, The Journal of Neuroscience.

[25]  T. Südhof,et al.  Differential expression of active zone proteins in neuromuscular junctions suggests functional diversification , 2006, The European journal of neuroscience.

[26]  M. Nonet,et al.  SYD-2 Liprin-α organizes presynaptic active zone formation through ELKS , 2006, Nature Neuroscience.

[27]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[28]  Eckart D. Gundelfinger,et al.  Molecular organization of the presynaptic active zone , 2006, Cell and Tissue Research.

[29]  N. Ziv,et al.  Assembly of Active Zone Precursor Vesicles , 2006, Journal of Biological Chemistry.

[30]  E. Gundelfinger,et al.  Molecular organization and assembly of the presynaptic active zone of neurotransmitter release. , 2006, Results and problems in cell differentiation.

[31]  T. Südhof,et al.  RIM function in short- and long-term synaptic plasticity. , 2005, Biochemical Society transactions.

[32]  N. Ziv,et al.  Unitary Assembly of Presynaptic Active Zones from Piccolo-Bassoon Transport Vesicles , 2003, Neuron.

[33]  Thomas C. Südhof,et al.  RIM1α is required for presynaptic long-term potentiation , 2002, Nature.

[34]  Thomas C. Südhof,et al.  β Phorbol Ester- and Diacylglycerol-Induced Augmentation of Transmitter Release Is Mediated by Munc13s and Not by PKCs , 2002, Cell.

[35]  F. H. Lopes da Silva,et al.  Rab3a is involved in transport of synaptic vesicles to the active zone in mouse brain nerve terminals. , 2001, Molecular biology of the cell.

[36]  Arne Stoschek,et al.  The architecture of active zone material at the frog's neuromuscular junction , 2001, Nature.

[37]  A. Dahlström,et al.  Distribution of Rab3a in rat nervous system: comparison with other synaptic vesicle proteins and neuropeptides , 1996, Brain Research.

[38]  A. Dahlström,et al.  Rab3a, a small GTP-binding protein, undergoes fast anterograde transport but not retrograde transport in neurons. , 1995, European journal of cell biology.

[39]  R. B. Wuerker CHANGES IN NERVE AND MUSCLE PRODUCED BY LONG‐TERM NERVE LIGATION , 1977, Journal of neuropathology and experimental neurology.

[40]  C. Sandri,et al.  Ultrastructure of the "active zone" in the frog neuromuscular junction. , 1973, Brain research.

[41]  L. Geffen,et al.  Rapid axoplasmic transport of tyrosine hydroxylase in relation to other cytoplasmic constituents. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. B. Wuerker,et al.  Neuronal microtubules, neurofilaments, and microfilaments. , 1972, International review of cytology.