Two Dimensional Subsonic Euler Flows Past a Wall or a Symmetric Body

[1]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[2]  Gui-Qiang G. Chen,et al.  Subsonic-Sonic Limit of Approximate Solutions to Multidimensional Steady Euler Equations , 2015, Archive for Rational Mechanics and Analysis.

[3]  S. Weng Subsonic irrotational flows in a two-dimensional finitely long curved nozzle , 2014 .

[4]  Z. Xin,et al.  Steady Subsonic Ideal Flows Through an Infinitely Long Nozzle with Large Vorticity , 2014 .

[5]  Z. Xin,et al.  Subsonic Irrotational Flows in a Finitely Long Nozzle with Variable end Pressure , 2014 .

[6]  Chunjing Xie,et al.  Three dimensional steady subsonic Euler flows in bounded nozzles , 2013, 1305.2242.

[7]  Zhouping Xin,et al.  On a Degenerate Free Boundary Problem and Continuous Subsonic–Sonic Flows in a Convergent Nozzle , 2013 .

[8]  Zhenguo Luo,et al.  Three-dimensional full Euler flows in axisymmetric nozzles , 2013 .

[9]  Z. Xin,et al.  Transonic Shocks for the Full Compressible Euler System in a General Two-Dimensional De Laval Nozzle , 2013 .

[10]  S. Weng A new formulation for the 3-D Euler equations with an application to subsonic flows in a cylinder , 2012, 1212.1635.

[11]  Lili Du,et al.  Note on the uniqueness of subsonic Euler flows in an axisymmetric nozzle , 2012, Appl. Math. Lett..

[12]  Wei Xiang,et al.  Global Steady Subsonic Flows through Infinitely Long Nozzles for the Full Euler Equations , 2011, SIAM J. Math. Anal..

[13]  F. Huang,et al.  On multi-dimensional sonic-subsonic flow , 2011, 1103.0078.

[14]  Chunjing Xie,et al.  Existence of steady subsonic Euler flows through infinitely long periodic nozzles , 2011, 1101.6010.

[15]  Zhouping Xin,et al.  Subsonic Flows in a Multi-Dimensional Nozzle , 2011, 1101.3685.

[16]  Ben Duan,et al.  Global subsonic Euler flows in an infinitely long axisymmetric nozzle , 2011 .

[17]  Zhouping Xin,et al.  Optimal Hölder Continuity for a Class of Degenerate Elliptic Problems with an Application to Subsonic-Sonic Flows , 2010 .

[18]  Chunjing Xie,et al.  Existence of Global Steady Subsonic Euler Flows Through Infinitely Long Nozzles , 2009, SIAM J. Math. Anal..

[19]  Chunjing Xie,et al.  Global Subsonic and Subsonic-Sonic Flows through Infinitely Long Axially Symmetric Nozzles , 2009, 0907.3274.

[20]  Z. Xin,et al.  The transonic shock in a nozzle, 2-D and 3-D complete Euler systems , 2008 .

[21]  Hairong Yuan,et al.  Transonic Shocks in Compressible Flow Passing a Duct for Three-Dimensional Euler Systems , 2008 .

[22]  Jun Chen SUBSONIC FLOWS FOR THE FULL EULER EQUATIONS IN HALF PLANE , 2007, 0710.3623.

[23]  Zhouping Xin,et al.  Transonic shock in a nozzle I: 2D case , 2005 .

[24]  Mikhail Feldman,et al.  MULTIDIMENSIONAL TRANSONIC SHOCKS AND FREE BOUNDARY PROBLEMS FOR NONLINEAR EQUATIONS OF MIXED TYPE , 2003 .

[25]  L Howarth,et al.  Mathematical Aspects of Subsonic and Transonic Gas Dynamics , 1959 .

[26]  David Gilbarg,et al.  Three-dimensional subsonic flows, and asymptotic estimates for elliptic partial differential equations , 1957 .

[27]  Cathleen S. Morawetz,et al.  On the non‐existence of continuous transonic flows past profiles II , 1956 .

[28]  Lipman Bers,et al.  Existence and uniqueness of a subsonic flow past a given profile , 1954 .

[29]  Max Shiffman On the Existence of Subsonic Flows of a Compressible Fluid. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Chunjing Xie,et al.  On subsonic Euler flows with stagnation points in two-dimensional nozzles , 2014 .

[31]  Jun Li ON TRANSONIC SHOCKS IN A NOZZLE WITH VARIABLE END PRESSURES , 2011 .

[32]  Chunjing Xie,et al.  Global subsonic and subsonic-sonic flows through infinitely long nozzles , 2007 .

[33]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[34]  Guangchang Dong,et al.  Subsonic flows around a body in space , 1993 .

[35]  Robert Finn,et al.  ASYMPTOTIC BEHAVIOR AND UNIQUENESS OF PLANE SUBSONIC FLOWS , 1957 .

[36]  D. Gilbarg,et al.  On Bodies Achieving Extreme Values of the Critical Mach Number, I , 1954 .