The Multilevel Splitting algorithm for graph colouring with application to the Potts model

Calculating the partition function of the zero-temperature antiferromagnetic model is an important problem in statistical physics. However, an exact calculation is hard since it is strongly connected to a fundamental combinatorial problem of counting proper vertex colourings in undirected graphs, for which an efficient algorithm is not known to exist. Thus, one has to rely on approximation techniques. In this paper, we formulate the problem of the partition function approximation in terms of rare-event probability estimation and investigate the performance of a particle-based algorithm, called Multilevel Splitting, for handling this setting. The proposed method enjoys a provable probabilistic performance guarantee and our numerical study indicates that this algorithm is capable of delivering accurate results using a relatively modest amount of computational resources.

[1]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[2]  Dirk P. Kroese,et al.  Efficient Monte Carlo simulation via the generalized splitting method , 2012, Stat. Comput..

[3]  Joseph A. Gallian,et al.  A Dynamic Survey of Graph Labeling , 2009, The Electronic Journal of Combinatorics.

[4]  G. Winkler,et al.  Complexity Penalized M-Estimation , 2008 .

[5]  Béla Bollobás,et al.  Random Graphs , 1985 .

[6]  Sai-Ping Li,et al.  Spin systems and Political Districting Problem , 2007 .

[7]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[8]  Shie Mannor,et al.  A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..

[9]  Alan M. Frieze,et al.  Electronic Colloquium on Computational Complexity Polynomial Time Randomised Approximation Schemes for Tutte-grr Othendieck Invariants: the Dense Case , 2022 .

[10]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[11]  E. Stein,et al.  Real Analysis: Measure Theory, Integration, and Hilbert Spaces , 2005 .

[12]  D. Welsh,et al.  The Potts model and the Tutte polynomial , 2000 .

[13]  Gerardo Rubino,et al.  Rare Event Simulation using Monte Carlo Methods , 2009 .

[14]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries , 2001, STOC '01.

[15]  L. Amaral,et al.  Small-World Networks: Evidence for a Crossover Picture , 1999, cond-mat/9903108.

[16]  Leslie Ann Goldberg,et al.  Inapproximability of the Tutte polynomial , 2006, STOC '07.

[17]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[18]  V. Loreto,et al.  Phase ordering and symmetries of the Potts model , 2006, cond-mat/0606282.

[19]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[20]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[21]  Reuven Y. Rubinstein,et al.  The Splitting Method for Decision Making , 2012, Commun. Stat. Simul. Comput..

[22]  Catherine S. Greenhill,et al.  Mixing of the Glauber dynamics for the ferromagnetic Potts model , 2013, Random Struct. Algorithms.

[24]  Paul J. Laurienti,et al.  The Ubiquity of Small-World Networks , 2011, Brain Connect..

[25]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[26]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[27]  Alan D. Sokal,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. I. General Theory and Square-Lattice Chromatic Polynomial , 2001 .

[28]  G. Winkler,et al.  Complexity Penalised M-Estimation: Fast Computation , 2005 .

[29]  Christopher David Chromatic Polynomials , 2016 .

[30]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[31]  R. Rubinstein,et al.  On the Use of Smoothing to Improve the Performance of the Splitting Method , 2011 .

[32]  R. Lourie,et al.  The Statistical Mechanics of Financial Markets , 2002 .

[33]  Persi Diaconis,et al.  A Sequential Importance Sampling Algorithm for Generating Random Graphs with Prescribed Degrees , 2011, Internet Math..

[34]  Daniel Rudoy,et al.  Rare Event Simulation and Counting Problems , 2009, Rare Event Simulation using Monte Carlo Methods.

[35]  R. Rubinstein The Gibbs Cloner for Combinatorial Optimization, Counting and Sampling , 2009 .

[36]  Paul Glasserman,et al.  Splitting for rare event simulation: analysis of simple cases , 1996, Winter Simulation Conference.

[37]  Reuven Y. Rubinstein,et al.  Fast Sequential Monte Carlo Methods for Counting and Optimization , 2013 .

[38]  Yuguo Chen,et al.  Sequential Monte Carlo Methods for Statistical Analysis of Tables , 2005 .

[39]  F. Y. Wu The Potts model , 1982 .

[40]  P. Ronhovde,et al.  Phase transitions in random Potts systems and the community detection problem: spin-glass type and dynamic perspectives , 2010, 1008.2699.

[41]  Konstantinos Panagiotou,et al.  On the Chromatic Number of Random Graphs , 2007, ICALP.

[42]  T. Prescott,et al.  The brainstem reticular formation is a small-world, not scale-free, network , 2006, Proceedings of the Royal Society B: Biological Sciences.

[43]  Vibhav Gogate,et al.  Sampling-based lower bounds for counting queries , 2011, Intelligenza Artificiale.

[44]  Glazier,et al.  Simulation of biological cell sorting using a two-dimensional extended Potts model. , 1992, Physical review letters.

[45]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[46]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[47]  Richard M. Karp,et al.  Monte-Carlo algorithms for enumeration and reliability problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[48]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[49]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[50]  Mark Jerrum,et al.  The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .

[51]  S. Prabakaran,et al.  THE STATISTICAL MECHANICS OF FINANCIAL MARKETS , 2007 .

[52]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[53]  D. Welsh,et al.  On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[54]  Martin E. Dyer,et al.  On Counting Independent Sets in Sparse Graphs , 2002, SIAM J. Comput..

[55]  Vasileios Vasaitis Approximate Counting by Dynamic Programming , 2005 .

[56]  Gordon F. Royle,et al.  Computing Tutte Polynomials , 2010, ACM Trans. Math. Softw..