A cooperative Brain Storm Optimization Algorithm

In the last few years, hybridization has spread as an effective technique to solve hard optimization problems where metaheuristics algorithms have been unable to find global optima in a computational cost given. In this article, we propose the so-called cooperation strategy. This way is an alternative to hybridization in which different algorithms work together in order to find a global optimum following an intrinsically parallel approach. Different homogeneous and heterogeneous strategies using CEC benchmark functions have been designed using Brain Storm Optimization (BSO) metaheuristic in comparison with a hybrid BSO, showing that cooperation improves significantly hybridization results and the original BSO.

[1]  Christian Blum,et al.  Hybrid Metaheuristics, An Emerging Approach to Optimization , 2008, Hybrid Metaheuristics.

[2]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[3]  Mohammed El-Abd Cooperative coevolution using the Brain Storm Optimization Algorithm , 2016, 2016 IEEE Symposium Series on Computational Intelligence (SSCI).

[4]  Yuhui Shi,et al.  Advanced discussion mechanism-based brain storm optimization algorithm , 2015, Soft Comput..

[5]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[6]  Erwie Zahara,et al.  Hybrid Nelder-Mead simplex search and particle swarm optimization for constrained engineering design problems , 2009, Expert Syst. Appl..

[7]  Yuhui Shi,et al.  Brain Storm Optimization Algorithm with Modified Step-Size and Individual Generation , 2012, ICSI.

[8]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[9]  Francisco Herrera,et al.  Iterative hybridization of DE with local search for the CEC'2015 special session on large scale global optimization , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[10]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[11]  Ricardo García-Ródenas,et al.  Hybrid meta-heuristic optimization algorithms for time-domain-constrained data clustering , 2014, Appl. Soft Comput..

[12]  Carlos Cruz Corona,et al.  Soft computing and cooperative strategies for optimization , 2005, Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05..

[13]  Yuhui Shi,et al.  An Improved Brain Storm Optimization with Differential Evolution Strategy for Applications of ANNs , 2015 .

[14]  Jingyu Wang,et al.  Brain Storm Optimization with Agglomerative Hierarchical Clustering Analysis , 2016, ICSI.

[15]  Ricardo García-Ródenas,et al.  A continuous bi-level model for the expansion of highway networks , 2014, Comput. Oper. Res..

[16]  M. Kamel,et al.  A Taxonomy of Cooperative Search Algorithms , 2005, Hybrid Metaheuristics.

[17]  Mohammed El-Abd,et al.  Brain storm optimization algorithm with re-initialized ideas and adaptive step size , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[18]  Junfeng Chen,et al.  Brain Storm Optimization Model Based on Uncertainty Information , 2014, 2014 Tenth International Conference on Computational Intelligence and Security.

[19]  Zhi-hui Zhan,et al.  A modified brain storm optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[20]  Christian Blum,et al.  Hybrid Metaheuristics: Powerful Tools for Optimization , 2016 .

[21]  Yuhui Shi,et al.  Optimal Satellite Formation Reconfiguration Based on Closed-Loop Brain Storm Optimization , 2013, IEEE Computational Intelligence Magazine.

[22]  Yuhui Shi,et al.  Brain Storm Optimization Algorithm , 2011, ICSI.

[23]  Yanqiu Sun,et al.  A Hybrid Approach by Integrating Brain Storm Optimization Algorithm with Grey Neural Network for Stock Index Forecasting , 2014 .

[24]  Bijaya Ketan Panigrahi,et al.  Bacterial foraging optimisation: Nelder-Mead hybrid algorithm for economic load dispatch , 2008 .

[25]  Yuhui Shi,et al.  Brain Storm Optimization Algorithm for Multi-objective Optimization Problems , 2012, ICSI.

[26]  José L. Verdegay,et al.  A centralised cooperative strategy for continuous optimisation: The influence of cooperation in performance and behaviour , 2013, Inf. Sci..

[27]  Michel Gendreau,et al.  Handbook of Metaheuristics , 2010 .

[28]  Bo Yang,et al.  Random Grouping Brain Storm Optimization Algorithm with a New Dynamically Changing Step Size , 2016, ICSI.

[29]  Junfeng Chen,et al.  Brain storm optimization algorithm: a review , 2016, Artificial Intelligence Review.

[30]  Ricardo García-Ródenas,et al.  High-speed railway scheduling based on user preferences , 2015, Eur. J. Oper. Res..

[31]  Carlos Cruz Corona,et al.  Using memory and fuzzy rules in a co-operative multi-thread strategy for optimization , 2006, Inf. Sci..

[32]  Ricardo García-Ródenas,et al.  Determining Highway Corridors , 2012 .