An algebraic continuous time parameter estimation for a sum of sinusoidal waveform signals

In this paper, a novel algebraic method is proposed to estimate amplitudes, frequencies, and phases of a biased and noisy sum of complex exponential sinusoidal signals. The resulting parameter estimates are given by original closed formulas, constructed as integrals acting as time-varying filters of the noisy measured signal. The proposed algebraic method provides faster and more robust results, compared with usual procedures. Some computer simulations illustrate the efficiency of our method. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  Simon Haykin,et al.  Adaptive filter theory (2nd ed.) , 1991 .

[2]  Wilfrid Perruquetti,et al.  Algebraic parameter estimation of a biased sinusoidal waveform signal from noisy data , 2012 .

[3]  Giuseppe Fedele,et al.  A property of the elementary symmetric functions on the frequencies of sinusoidal signals , 2009, Signal Process..

[4]  J.R. Trapero-Arenas,et al.  On-line frequency and damping estimation in a single-link flexible manipulator based on algebraic identification , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[5]  Olivier Gibaru,et al.  Differentiation by integration with Jacobi polynomials , 2011, J. Comput. Appl. Math..

[6]  Olivier Gibaru,et al.  Convergence Rate of the Causal Jacobi Derivative Estimator , 2010, Curves and Surfaces.

[7]  Vicente Feliú Batlle,et al.  An algebraic frequency estimator for a biased and noisy sinusoidal signal , 2007, Signal Process..

[8]  Denis V. Efimov,et al.  Switched Algorithm for Frequency Estimation with Noise Rejection , 2012, IEEE Transactions on Automatic Control.

[9]  Mamadou Mboup,et al.  Estimation algébrique des paramètres intrinsèques d'un signal sinusoïdal biaisé en environnement bruité , 2011 .

[10]  Jonathan Becedas,et al.  Adaptive Controller for Single-Link Flexible Manipulators Based on Algebraic Identification and Generalized Proportional Integral Control , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[11]  Ta-Hsin Li,et al.  Strong consistency of the contraction mapping method for frequency estimation , 1993, IEEE Trans. Inf. Theory.

[12]  Mamadou Mboup,et al.  Parameter estimation via differential algebra and operational culculus , 2007 .

[13]  Chin-Teng Lin,et al.  Fundamental frequency estimation based on the joint time-frequency analysis of harmonic spectral structure , 2001, IEEE Trans. Speech Audio Process..

[14]  Petre Stoica,et al.  Performance analysis of an adaptive notch filter with constrained poles and zeros , 1988, IEEE Trans. Acoust. Speech Signal Process..

[15]  Sergio M. Savaresi,et al.  Unbiased estimation of a sinusoid in colored noise via adapted notch filters , 1997, Autom..

[16]  Wu Jiekang,et al.  High-accuracy, wide-range frequency estimation methods for power system signals under nonsinusoidal conditions , 2005 .

[17]  Olivier Gibaru,et al.  Error analysis for a class of numerical differentiator: application to state observation , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[18]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[19]  Ming Hou,et al.  Parameter Identification of Sinusoids , 2012, IEEE Transactions on Automatic Control.

[20]  Vicente Feliú Batlle,et al.  On the algebraic identification of the frequencies, amplitudes and phases of two sinusoidal signals from their noisy sum , 2008, Int. J. Control.

[21]  M. Mboup Parameter estimation for signals described by differential equations , 2009 .

[22]  Gordon K. Smyth,et al.  A Modified Prony Algorithm for Exponential Function Fitting , 1995, SIAM J. Sci. Comput..

[23]  Anssi Klapuri,et al.  Multiple fundamental frequency estimation based on harmonicity and spectral smoothness , 2003, IEEE Trans. Speech Audio Process..

[24]  Alireza R. Bakhshai,et al.  An adaptive notch filter for frequency estimation of a periodic signal , 2004, IEEE Transactions on Automatic Control.

[25]  Barbara F. La Scala,et al.  An extended Kalman filter frequency tracker for high-noise environments , 1996, IEEE Trans. Signal Process..

[26]  Olivier Gibaru,et al.  Error analysis of Jacobi derivative estimators for noisy signals , 2011, Numerical Algorithms.

[27]  Laurence B. Milstein,et al.  Channel estimation for non-ideal OFDM systems , 2010, IEEE Transactions on Communications.

[28]  Cédric Join,et al.  Non-linear estimation is easy , 2007, Int. J. Model. Identif. Control..

[29]  Alessandro Astolfi,et al.  A hybrid observer for frequency estimation of saturated multi-frequency signals , 2011, IEEE Conference on Decision and Control and European Control Conference.

[30]  H. Sira-Ramírez,et al.  A fast on-line frequency estimator of lightly damped vibrations in flexible structures , 2007 .

[31]  M.R. Iravani,et al.  Estimation of frequency and its rate of change for applications in power systems , 2004, IEEE Transactions on Power Delivery.

[32]  Michel Fliess Critique du rapport signal à bruit en communications numériques -- Questioning the signal to noise ratio in digital communications , 2008, ArXiv.

[33]  Dayan Liu,et al.  An error analysis in the algebraic estimation of a noisy sinusoidal signal , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[34]  Sergio M. Savaresi,et al.  On the parametrization and design of an extended Kalman filter frequency tracker , 2000, IEEE Trans. Autom. Control..

[35]  M. Fliess,et al.  A revised look at numerical differentiation with an application to nonlinear feedback control , 2007, 2007 Mediterranean Conference on Control & Automation.

[36]  Petre Stoica List of references on spectral line analysis , 1993, Signal Process..

[37]  Wu Jiekang,et al.  High-accuracy, wide-range frequency estimation methods for power system signals under nonsinusoidal conditions , 2005, IEEE Transactions on Power Delivery.

[38]  Vicente Feliú Batlle,et al.  Adaptive input shaping for manoeuvring flexible structures using an algebraic identification technique , 2009, Autom..

[39]  Cédric Join,et al.  Algebraic change-point detection , 2009, Applicable Algebra in Engineering, Communication and Computing.

[40]  Julius O. Smith,et al.  Analysis and performance evaluation of an adaptive notch filter , 1983 .

[41]  Giuseppe Fedele,et al.  Multi-sinusoidal signal estimation by an adaptive SOGI-filters bank , 2009 .

[42]  M. Fliess,et al.  An algebraic receiver for full response CPM demodulation , 2006, 2006 International Telecommunications Symposium.

[43]  X. Xia Global frequency estimation using adaptive identifiers , 2002, IEEE Trans. Autom. Control..

[44]  M. Fliess,et al.  An algebraic framework for linear identification , 2003 .

[45]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[46]  Wilfrid Perruquetti,et al.  An algebraic approach for human posture estimation in the sagittal plane using accelerometer noisy signal , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[47]  S. Kung,et al.  Adaptive notch filtering for the retrieval of sinusoids in noise , 1984 .

[48]  C. Zarowski,et al.  Some algorithms for circadian rhythm identification , 2001, 2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233).

[49]  Robert R. Bitmead,et al.  Conditions for stability of the extended Kalman filter and their application to the frequency tracking problem , 1995, Math. Control. Signals Syst..

[50]  Cédric Join,et al.  Numerical differentiation with annihilators in noisy environment , 2009, Numerical Algorithms.

[51]  Romeo Ortega,et al.  A globally convergent frequency estimator , 1999, IEEE Trans. Autom. Control..

[52]  Jun Yu,et al.  Improved maximum frequency estimation with application to instantaneous mean frequency estimation of surface electromyography , 2004, IEEE Transactions on Biomedical Engineering.

[53]  Mu-Huo Cheng,et al.  A new IIR adaptive notch filter , 2006, Signal Process..

[54]  J. McConnell,et al.  Noncommutative Noetherian Rings , 2001 .

[55]  M. R. Osborne,et al.  On the consistency of Prony's method and related algorithms , 1992 .

[56]  M. Fliess,et al.  Questioning some paradigms of signal processing via concrete examples , 2003 .

[57]  M. Fliess,et al.  Compression différentielle de transitoires bruités , 2004 .

[58]  Norman M. Wereley,et al.  Performance of higher harmonic control algorithms for helicopter vibration reduction , 1993 .

[59]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[60]  C. W. Liu,et al.  A Precise Calculation of Power System Frequency , 2001, IEEE Power Engineering Review.

[61]  Hebertt Sira-Ramírez,et al.  Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques , 2007 .

[62]  Raoul Herzog,et al.  Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings , 1996, IEEE Trans. Control. Syst. Technol..

[63]  Alessandro Astolfi,et al.  Hybrid Observer for Global Frequency Estimation of Saturated Signals , 2009, IEEE Transactions on Automatic Control.

[64]  P. Djurić,et al.  Frequency tracking in power networks in the presence of harmonics , 1993 .

[65]  Mamadou Mboup,et al.  Neural spike detection and localisation via Volterra filtering , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[66]  P. Regalia Adaptive IIR Filtering in Signal Processing and Control , 1994 .

[67]  Frankie K. W. Chan,et al.  A generalized weighted linear predictor frequency estimation approach for a complex sinusoid , 2006, IEEE Transactions on Signal Processing.

[68]  Scott C. Douglas,et al.  Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequency , 1996, Autom..