Finite horizon H∞ control for a class of sampled‐data linear quantum systems

Summary In this paper, a finite horizon H∞ control problem is solved for a class of linear quantum systems using a dynamic game approach for the case of sampled-data measurements. The methodology adopted involves an equivalence between the quantum problem and two auxiliary classical problems. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[2]  Shinji Hara,et al.  A hybrid state-space approach to sampled-data feedback control , 1994 .

[3]  Kurt Jacobs,et al.  Information-tradeoff relations for finite-strength quantum measurements , 2001 .

[4]  Ian R. Petersen,et al.  Finite Horizon HINFINITY Control for a Class of Linear Quantum Measurement Delayed Systems: A Dynamic Game Approach , 2014, SIAM J. Control. Optim..

[5]  Matthew R. James,et al.  Quantum Dissipative Systems and Feedback Control Design by Interconnection , 2007, IEEE Transactions on Automatic Control.

[6]  E H Huntington,et al.  LQG control of an optical squeezer , 2010, Proceedings of the 2010 American Control Conference.

[7]  Hendra I. Nurdin,et al.  Network synthesis of mixed quantum-classical linear stochastic systems , 2011, 2011 Australian Control Conference.

[8]  Ian R. Petersen,et al.  Time-varying H∞ control for a class of linear quantum systems: A dynamic game approach , 2012, Autom..

[9]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[10]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[11]  Ian R Petersen,et al.  Coherent $H^{\infty }$ Control for a Class of Annihilation Operator Linear Quantum Systems , 2011, IEEE Transactions on Automatic Control.