In Vivo Detection of miRNA Expression in Tumors Using an Activatable Nanosensor

[1]  S. Kauppinen,et al.  Development of microRNA therapeutics is coming of age , 2014, EMBO molecular medicine.

[2]  A. Moore,et al.  Design of nanodrugs for miRNA targeting in tumor cells. , 2014, Journal of biomedical nanotechnology.

[3]  Shenming Wang,et al.  MicroRNA Profiling Implies New Markers of Chemoresistance of Triple-Negative Breast Cancer , 2014, PloS one.

[4]  A. Moore,et al.  Detection of miRNA expression in intact cells using activatable sensor oligonucleotides. , 2014, Chemistry & biology.

[5]  M. Fabbri,et al.  MicroRNAs and other non-coding RNAs as targets for anticancer drug development , 2013, Nature Reviews Drug Discovery.

[6]  M. Kumar,et al.  Context-dependent differences in miR-10b breast oncogenesis can be targeted for the prevention and arrest of lymph node metastasis , 2013, Oncogene.

[7]  Bei Zhang,et al.  The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers , 2013, Tumor Biology.

[8]  Ping Wu,et al.  Fluorescence quenching of graphene oxide integrating with the site-specific cleavage of the endonuclease for sensitive and selective microRNA detection. , 2013, Analytical chemistry.

[9]  Nahum Sonenberg,et al.  The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC , 2012, Nature Structural &Molecular Biology.

[10]  Y. Miki,et al.  High level of miR-21, miR-10b, and miR-31 expression in bilateral vs. unilateral breast carcinomas , 2012, Breast Cancer Research and Treatment.

[11]  Tim R. Mercer,et al.  Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage , 2011, Nucleic acids research.

[12]  Sylvain Gioux,et al.  The FLARE Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Perforator Flap Breast Reconstruction , 2010, Plastic and reconstructive surgery.

[13]  G. Dai,et al.  Image-guided breast tumor therapy using a small interfering RNA nanodrug. , 2010, Cancer research.

[14]  Christopher Pöhlmann,et al.  Electrochemical detection of microRNAs via gap hybridization assay. , 2010, Analytical chemistry.

[15]  Botao Zhao,et al.  Development of a low-cost detection method for miRNA microarray. , 2010, Acta biochimica et biophysica Sinica.

[16]  Robert A. Weinberg,et al.  Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model , 2010, Nature Biotechnology.

[17]  Weimin Fan,et al.  Nanoparticles for tumor targeted therapies and their pharmacokinetics. , 2010, Current drug metabolism.

[18]  Henrik H. J. Persson,et al.  DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets , 2009, Nature.

[19]  Lloyd M Smith,et al.  Rapid determination of RNA accessible sites by surface plasmon resonance detection of hybridization to DNA arrays. , 2009, Analytical chemistry.

[20]  Soonhag Kim,et al.  A reporter gene imaging system for monitoring microRNA biogenesis , 2009, Nature Protocols.

[21]  Yiping Zhao,et al.  Quantitative Surface-Enhanced Raman Spectroscopy Based Analysis of MicroRNA Mixtures , 2009, Applied spectroscopy.

[22]  Stefano Volinia,et al.  MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets , 2009, The Journal of pathology.

[23]  Andrew Tsourkas,et al.  Imaging individual microRNAs in single mammalian cells in situ , 2009, Nucleic acids research.

[24]  John V Frangioni,et al.  Detection of breast cancer microcalcifications using a dual-modality SPECT/NIR fluorescent probe. , 2008, Journal of the American Chemical Society.

[25]  David A Boas,et al.  Assessing the future of diffuse optical imaging technologies for breast cancer management. , 2008, Medical physics.

[26]  Suresh Shrestha,et al.  Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. , 2008, Analytical chemistry.

[27]  R. Weinberg,et al.  Tumour invasion and metastasis initiated by microRNA-10b in breast cancer , 2007, Nature.

[28]  Eugene Berezikov,et al.  Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification , 2007, Nature Protocols.

[29]  Anna Moore,et al.  In vivo imaging of siRNA delivery and silencing in tumors , 2007, Nature Medicine.

[30]  R. Weissleder,et al.  Cell-specific targeting of nanoparticles by multivalent attachment of small molecules , 2005, Nature Biotechnology.

[31]  R. Langer,et al.  Exploring polyethylenimine‐mediated DNA transfection and the proton sponge hypothesis , 2005, The journal of gene medicine.

[32]  Zissimos Mourelatos,et al.  Microarray-based, high-throughput gene expression profiling of microRNAs , 2004, Nature Methods.

[33]  Michael Famulok,et al.  Sequence-specific detection of MicroRNAs by signal-amplifying ribozymes. , 2004, Journal of the American Chemical Society.

[34]  Ralph Weissleder,et al.  Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. , 2003, The New England journal of medicine.

[35]  B. Seifert,et al.  Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement. , 2002, Radiology.

[36]  R. Weissleder,et al.  Uptake of dextran‐coated monocrystalline iron oxides in tumor cells and macrophages , 1997, Journal of magnetic resonance imaging : JMRI.

[37]  Wei Yan,et al.  In situ hybridization detection of microRNAs. , 2010, Methods in molecular biology.

[38]  Z. Havelda In situ detection of miRNAs using LNA probes. , 2010, Methods in molecular biology.

[39]  Stefano Volinia,et al.  A methodology for the combined in situ analyses of the precursor and mature forms of microRNAs and correlation with their putative targets , 2009, Nature Protocols.

[40]  I. Majoros,et al.  The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. , 2007, Chemistry & biology.