Issues underlying use of biosensors to measure metal bioavailability.

[1]  C. Rensing,et al.  ZupT Is a Zn(II) Uptake System in Escherichia coli , 2002, Journal of bacteriology.

[2]  S. Howitt,et al.  Characterization of PitA and PitB fromEscherichia coli , 2001, Journal of bacteriology.

[3]  C. Rensing,et al.  ZitB (YbgR), a Member of the Cation Diffusion Facilitator Family, Is an Additional Zinc Transporter inEscherichia coli , 2001, Journal of bacteriology.

[4]  Markus J. Tamás,et al.  Mechanisms involved in metalloid transport and tolerance acquisition , 2001, Current Genetics.

[5]  C. Outten,et al.  Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis , 2001, Science.

[6]  C. Rensing,et al.  NreB from Achromobacter xylosoxidans 31A Is a Nickel-Induced Transporter Conferring Nickel Resistance , 2001, Journal of bacteriology.

[7]  G. Barrett,et al.  Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. , 2000, Chemical reviews.

[8]  B. Finlay,et al.  The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen , 2000, Molecular microbiology.

[9]  M. Guerinot The ZIP family of metal transporters. , 2000, Biochimica et biophysica acta.

[10]  S. J. Beard,et al.  Evidence for the transport of zinc(II) ions via the pit inorganic phosphate transport system in Escherichia coli. , 2000, FEMS microbiology letters.

[11]  S. Cole,et al.  Identification of the Escherichia coli K‐12 Nramp orthologue (MntH) as a selective divalent metal ion transporter , 2000, Molecular microbiology.

[12]  C. Rensing,et al.  The ATP Hydrolytic Activity of Purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli * , 2000, The Journal of Biological Chemistry.

[13]  T. O’Halloran,et al.  DNA Distortion Mechanism for Transcriptional Activation by ZntR, a Zn(II)-responsive MerR Homologue in Escherichia coli * , 1999, The Journal of Biological Chemistry.

[14]  D. Nies,et al.  CzcD Is a Heavy Metal Ion Transporter Involved in Regulation of Heavy Metal Resistance in Ralstonia sp. Strain CH34 , 1999, Journal of bacteriology.

[15]  Shaolin Chen,et al.  Cloning, Expression, and Characterization of Cadmium and Manganese Uptake Genes from Lactobacillus plantarum , 1999, Applied and Environmental Microbiology.

[16]  C. Rensing,et al.  Families of Soft-Metal-Ion-Transporting ATPases , 1999, Journal of bacteriology.

[17]  D. Nies,et al.  Microbial heavy-metal resistance , 1999, Applied Microbiology and Biotechnology.

[18]  T. O’Halloran,et al.  Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. , 1999, Science.

[19]  G. Brown,et al.  Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  N. Brown,et al.  ZntR is a Zn(II)‐responsive MerR‐like transcriptional regulator of zntA in Escherichia coli , 1999, Molecular microbiology.

[21]  C. Rensing,et al.  Pb(II)-translocating P-type ATPases* , 1998, The Journal of Biological Chemistry.

[22]  J. Helmann,et al.  Identification of a Zinc-Specific Metalloregulatory Protein, Zur, Controlling Zinc Transport Operons inBacillus subtilis , 1998, Journal of bacteriology.

[23]  M Virta,et al.  Luminescent bacterial sensor for cadmium and lead. , 1998, Biosensors & bioelectronics.

[24]  I. Kong Metal toxicity on the dechlorination of monochlorophenols in fresh and acclimated anaerobic sediment slurries , 1998 .

[25]  Sylvia Daunert,et al.  Bacteria-based chemiluminescence sensing system using β-galactosidase under the control of the ArsR regulatory protein of the ars operon , 1998 .

[26]  Warren Jackson,et al.  Assessment of metal inhibition of reductive dechlorination of hexachlorobenzene at a superfund site , 1998 .

[27]  K. Hantke,et al.  The ZnuABC high‐affinity zinc uptake system and its regulator Zur in Escherichia coli , 1998, Molecular microbiology.

[28]  M. Maguire,et al.  Microbial magnesium transport: unusual transporters searching for identity , 1998, Molecular microbiology.

[29]  I. Paulsen,et al.  Major Facilitator Superfamily , 1998, Microbiology and Molecular Biology Reviews.

[30]  C. Rensing,et al.  The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[31]  C. Lingwood,et al.  Identification of the Key Protein for Zinc Uptake in Hemophilus influenzae * , 1997, The Journal of Biological Chemistry.

[32]  M Virta,et al.  Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite , 1997, Applied and environmental microbiology.

[33]  S. J. Beard,et al.  Zinc(II) tolerance in Escherichia coli K‐12: evidence that the zntA gene (o732) encodes a cation transport ATPase , 1997, Molecular microbiology.

[34]  C. Rensing,et al.  Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli , 1997, Journal of bacteriology.

[35]  I. Paulsen,et al.  A Novel Family of Ubiquitous Heavy Metal Ion Transport Proteins , 1997, The Journal of Membrane Biology.

[36]  M Mergeay,et al.  Two‐component regulatory system involved in transcriptional control of heavy‐metal homoeostasis in Alcaligenes eutrophus , 1997, Molecular microbiology.

[37]  R. Palmiter,et al.  ZnT-3, a putative transporter of zinc into synaptic vesicles. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Pardue,et al.  Effect of cadmium on reductive dechlorination of trichloroaniline , 1996 .

[39]  N. Brown,et al.  Induction of bacterial mercury- and copper-responsive promoters: Functional differences between inducible systems and implications for their use in gene-fusions for in vivo metal biosensors , 1995, Journal of Industrial Microbiology.

[40]  G. Geesey,et al.  Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture , 1995, Applied and environmental microbiology.

[41]  R. Palmiter,et al.  Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. , 1995, The EMBO journal.

[42]  Marko Virta,et al.  A Luminescence-Based Mercury Biosensor , 1995 .

[43]  G. Paton,et al.  Assessment of bioavailability of heavy metals using lux modified constructs of Pseudomonas fluorescens , 1995 .

[44]  Lawrence A. Baker,et al.  Environmental chemistry of lakes and reservoirs , 1994 .

[45]  J. Moore Contaminant Mobilization Resulting from Redox Pumping in a Metal-Contaminated River—Reservoir System , 1994 .

[46]  K B Konstantinov,et al.  Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions , 1994, Applied and environmental microbiology.

[47]  I. Karube,et al.  Immobilized cells used for detection and analysis. , 1994, Current opinion in biotechnology.

[48]  R. Hinchee,et al.  Applied biotechnology for site remediation 2(3) , 1993 .

[49]  R. Burlage,et al.  Bioluminescent sensors for detection of bioavailable Hg(II) in the environment , 1993, Applied and environmental microbiology.

[50]  A. K. Davis,et al.  Micromineralogy of mine wastes in relation to lead bioavailability, Butte, Montana , 1993 .

[51]  C. Kung,et al.  COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae , 1992, Molecular and cellular biology.

[52]  P. Williams,et al.  lux genes and the applications of bacterial bioluminescence. , 1992, Journal of general microbiology.

[53]  G. Sayler,et al.  Rapid, Sensitive Bioluminescent Reporter Technology for Naphthalene Exposure and Biodegradation , 1990, Science.

[54]  C. Brierley Bioremediation of metal‐contaminated surface and groundwaters , 1990 .

[55]  B. J. Alloway,et al.  Heavy metals in soils , 1990 .

[56]  Y. Teranishi,et al.  Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae , 1989, Molecular and General Genetics MGG.

[57]  F. Archibald,et al.  Manganese acquisition by Lactobacillus plantarum , 1984, Journal of bacteriology.

[58]  S. Silver,et al.  Cadmium and manganese transport in Staphylococcus aureus membrane vesicles , 1982, Journal of bacteriology.

[59]  A. Tessier,et al.  Sequential extraction procedure for the speciation of particulate trace metals , 1979 .

[60]  G. Stotzky,et al.  Reductions in the Toxicity of Cadmium to Microorganisms by Clay Minerals , 1977, Applied and environmental microbiology.

[61]  S. Fisher,et al.  Regulation of Manganese Accumulation and Exchange in Bacillus subtilis W23 , 1973, Journal of bacteriology.

[62]  K. Axelsen,et al.  Evolution of Substrate Specificities in the P-Type ATPase Superfamily , 1998, Journal of Molecular Evolution.

[63]  C. Rensing,et al.  A Zn(II)-translocating P-type ATPase from Proteus mirabilis. , 1998, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[64]  S. Daunert,et al.  Genetically engineered bacteria: electrochemical sensing systems for antimonite and arsenite. , 1997, Analytical chemistry.

[65]  S. Silver,et al.  Bacterial heavy metal resistance: new surprises. , 1996, Annual review of microbiology.

[66]  R. Miller,et al.  Bioremediation: Microbial remediation of metals , 1996 .

[67]  K. Wood,et al.  Transduction in microbial biosensors using multiplexed bioluminescence. , 1996, Biosensors & bioelectronics.

[68]  R. Crawford,et al.  Bioremediation : principles and applications , 1996 .

[69]  R. Burlage,et al.  Living biosensors for the management and manipulation of microbial consortia. , 1994, Annual review of microbiology.

[70]  P. Sadler,et al.  The Importance of Chemical “Speciation” in Environmental Processes , 1986, Dahlem Workshop Reports.