Emergence of classical objectivity of quantum Darwinism in a photonic quantum simulator.

[1]  W. Zurek,et al.  Revealing the Emergence of Classicality Using Nitrogen-Vacancy Centers. , 2018, Physical review letters.

[2]  W. Zurek Quantum theory of the classical: quantum jumps, Born’s Rule and objective classical reality via quantum Darwinism , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  P. Mataloni,et al.  Experimental signature of quantum Darwinism in photonic cluster states , 2018, Physical Review A.

[4]  I. Bloch,et al.  Quantum simulations with ultracold atoms in optical lattices , 2017, Science.

[5]  Matthias Troyer,et al.  Neural-network quantum state tomography , 2017, Nature Physics.

[6]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[7]  J. Korbicz,et al.  Analytical studies of spectrum broadcast structures in quantum Brownian motion , 2016, 1603.04217.

[8]  P. Horodecki,et al.  Objectivity in a noisy photonic environment through quantum state information broadcasting. , 2014, Physical review letters.

[9]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[10]  Fernando G S L Brandão,et al.  Generic emergence of classical features in quantum Darwinism , 2013, Nature Communications.

[11]  Alexander Streltsov,et al.  Quantum discord cannot be shared. , 2013, Physical review letters.

[12]  Michael Zwolak,et al.  Complementarity of quantum discord and classically accessible information , 2013, Scientific Reports.

[13]  Angelo Bassi,et al.  Models of Wave-function Collapse, Underlying Theories, and Experimental Tests , 2012, 1204.4325.

[14]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[15]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[16]  John A Smolin,et al.  Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise. , 2012, Physical review letters.

[17]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[18]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[19]  Hermann Kampermann,et al.  Linking quantum discord to entanglement in a measurement. , 2010, Physical review letters.

[20]  C Jess Riedel,et al.  Quantum Darwinism in an everyday environment: huge redundancy in scattered photons. , 2010, Physical review letters.

[21]  W. Zurek,et al.  Quantum Darwinism in non-ideal environments , 2009, 0911.4307.

[22]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[23]  W. Zurek Quantum Darwinism , 2009, 0903.5082.

[24]  P. Horodecki,et al.  No-local-broadcasting theorem for multipartite quantum correlations. , 2007, Physical review letters.

[25]  W. Zurek,et al.  Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information , 2005, quant-ph/0505031.

[26]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[27]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[28]  V. Vedral Classical correlations and entanglement in quantum measurements. , 2002, Physical review letters.

[29]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[30]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[31]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[32]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[33]  E. Joos,et al.  The emergence of classical properties through interaction with the environment , 1985 .

[34]  H. Everett "Relative State" Formulation of Quantum Mechanics , 1957 .

[35]  J. Wheeler Assessment of Everett's 'Relative State' Formulation of Quantum Theory , 1957 .

[36]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .