Efficient simulation of Lévy-driven point processes

Abstract In this paper, we introduce a new large family of Lévy-driven point processes with (and without) contagion, by generalising the classical self-exciting Hawkes process and doubly stochastic Poisson processes with non-Gaussian Lévy-driven Ornstein–Uhlenbeck-type intensities. The resulting framework may possess many desirable features such as skewness, leptokurtosis, mean-reverting dynamics, and more importantly, the ‘contagion’ or feedback effects, which could be very useful for modelling event arrivals in finance, economics, insurance, and many other fields. We characterise the distributional properties of this new class of point processes and develop an efficient sampling method for generating sample paths exactly. Our simulation scheme is mainly based on the distributional decomposition of the point process and its intensity process. Extensive numerical implementations and tests are reported to demonstrate the accuracy and effectiveness of our scheme. Moreover, we use portfolio risk management as an example to show the applicability and flexibility of our algorithms.

[1]  O. Barndorff-Nielsen Superposition of Ornstein--Uhlenbeck Type Processes , 2001 .

[2]  A. Dassios,et al.  A dynamic contagion process , 2011, Advances in Applied Probability.

[3]  M. Yor,et al.  A Simple Stochastic Rate Model for Rate Equity Hybrid Products , 2013 .

[4]  N. Shephard,et al.  Modelling by Lévy Processess for Financial Econometrics , 2001 .

[5]  M. Yor,et al.  Stochastic Volatility for Lévy Processes , 2003 .

[6]  R. Cont,et al.  RUNNING FOR THE EXIT: DISTRESSED SELLING AND ENDOGENOUS CORRELATION IN FINANCIAL MARKETS , 2011 .

[7]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[8]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[9]  Yan Qu,et al.  Exact Simulation for a Class of Tempered Stable and Related Distributions , 2018, ACM Trans. Model. Comput. Simul..

[10]  Larry Eisenberg,et al.  Systemic Risk in Financial Networks , 1999, Manag. Sci..

[11]  P. DeMarzo,et al.  Endogenous Information Flows and the Clustering of Announcements , 2008 .

[12]  Kay Giesecke,et al.  Corporate Bond Default Risk: A 150-Year Perspective , 2010 .

[13]  Angelos Dassios,et al.  A Generalised Contagion Process with an Application to Credit Risk , 2016 .

[14]  Jean Jacod,et al.  Estimating the degree of activity of jumps in high frequency data , 2009, 0908.3095.

[15]  Markus K. Brunnermeier,et al.  Market Liquidity and Funding Liquidity , 2005 .

[16]  A. Kyprianou Introductory Lectures on Fluctuations of Lévy Processes with Applications , 2006 .

[17]  Kay Giesecke,et al.  Affine Point Processes and Portfolio Credit Risk , 2010, SIAM J. Financial Math..

[18]  A. Dassios,et al.  Exact Simulation of Hawkes Process with Exponentially Decaying Intensity , 2013 .

[19]  Cindy L. Yu,et al.  A Bayesian Analysis of Return Dynamics with Lévy Jumps , 2008 .

[20]  W. Schoutens,et al.  Levy Processes in Credit Risk , 2009 .

[21]  D. Duffie,et al.  Common Failings: How Corporate Defaults are Correlated , 2006 .

[22]  P. Embrechts,et al.  Multivariate Hawkes processes: an application to financial data , 2011, Journal of Applied Probability.

[23]  Nan Chen,et al.  Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations , 2013, Math. Oper. Res..

[24]  Mark H. A. Davis Piecewise‐Deterministic Markov Processes: A General Class of Non‐Diffusion Stochastic Models , 1984 .

[25]  E. Nicolato,et al.  Option Pricing in Stochastic Volatility Models of the Ornstein‐Uhlenbeck type , 2003 .

[26]  Vadim Linetsky,et al.  TIME‐CHANGED ORNSTEIN–UHLENBECK PROCESSES AND THEIR APPLICATIONS IN COMMODITY DERIVATIVE MODELS , 2012, 1204.3679.

[27]  R. Gencay,et al.  An Introduc-tion to High-Frequency Finance , 2001 .

[28]  Mark H. Davis Markov Models and Optimization , 1995 .

[29]  Didier Sornette,et al.  Robust dynamic classes revealed by measuring the response function of a social system , 2008, Proceedings of the National Academy of Sciences.

[30]  Arvind Rajan,et al.  An Empirical Analysis of the Pricing of Collateralized Debt Obligations , 2008 .

[31]  J. Rosínski Tempering stable processes , 2007 .

[32]  P. Devolder,et al.  Mortality modelling with Lévy processes , 2008 .

[33]  Nan Chen,et al.  Exact Simulation of the SABR Model , 2017, Oper. Res..

[34]  A. Brix Generalized Gamma measures and shot-noise Cox processes , 1999, Advances in Applied Probability.

[35]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[36]  D. Duffie,et al.  Frailty Correlated Default , 2006 .

[37]  F. Caccioli,et al.  Stability analysis of financial contagion due to overlapping portfolios , 2014 .

[38]  A. Dassios,et al.  Exact simulation of gamma-driven Ornstein–Uhlenbeck processes with finite and infinite activity jumps , 2019, J. Oper. Res. Soc..

[39]  A. Krishnamurthy How Debt Markets Have Malfunctioned in the Crisis , 2009 .

[40]  O. Barndorff-Nielsen,et al.  Some stationary processes in discrete and continuous time , 1998, Advances in Applied Probability.

[41]  Kay Giesecke,et al.  Exact Simulation of Point Processes with Stochastic Intensities , 2010, Oper. Res..

[42]  Luc Devroye,et al.  Random variate generation for exponentially and polynomially tilted stable distributions , 2009, TOMC.

[43]  Jeffrey D. Scargle,et al.  An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods , 2004, Technometrics.

[44]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[45]  Neil Shephard,et al.  Integrated OU Processes and Non‐Gaussian OU‐based Stochastic Volatility Models , 2003 .

[46]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[47]  Michael B. Gordy A Comparative Anatomy of Credit Risk Models , 2000 .

[48]  Exploring the sources of default clustering , 2018, Journal of Financial Economics.

[49]  D.,et al.  Regression Models and Life-Tables , 2022 .

[50]  J. Poterba,et al.  Mean Reversion in Stock Prices: Evidence and Implications , 1987 .

[51]  J. Rosínski Series Representations of Lévy Processes from the Perspective of Point Processes , 2001 .

[52]  S. Morris,et al.  Liquidity Black Holes , 2003 .

[53]  Yacine Ait-Sahalia,et al.  Modeling Financial Contagion Using Mutually Exciting Jump Processes , 2010 .

[54]  R. Cont,et al.  FIRE SALES FORENSICS: MEASURING ENDOGENOUS RISK , 2016 .

[55]  H. Thompson,et al.  High-Frequency Financial Econometrics , 2016 .

[56]  Paul Embrechts,et al.  Martingales and insurance risk , 1989 .

[57]  A. Hawkes Point Spectra of Some Mutually Exciting Point Processes , 1971 .

[58]  O. Barndorff-Nielsen Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .

[59]  P. Brémaud,et al.  STABILITY OF NONLINEAR HAWKES PROCESSES , 1996 .

[60]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[61]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[62]  Paul Glasserman,et al.  Sensitivity estimates from characteristic functions , 2007, 2007 Winter Simulation Conference.

[63]  N. Shephard,et al.  Realised power variation and stochastic volatility models , 2003 .

[64]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[65]  A. Hawkes Spectra of some self-exciting and mutually exciting point processes , 1971 .

[66]  A. Hawkes,et al.  A cluster process representation of a self-exciting process , 1974, Journal of Applied Probability.

[67]  Jan Hannig,et al.  Detecting Jumps from Levy Jump Diffusion Processes , 2009 .

[68]  Marius Hofert,et al.  Sampling Exponentially Tilted Stable Distributions , 2011, TOMC.

[69]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[70]  Angelos Dassios,et al.  Efficient Simulation of Clustering Jumps with CIR Intensity , 2017, Oper. Res..

[71]  Roger J. A. Laeven,et al.  Mutual Excitation in Eurozone Sovereign CDS , 2014 .

[72]  Markus K. Brunnermeier Deciphering the Liquidity and Credit Crunch 2007-08 , 2008 .

[73]  Mark Broadie,et al.  Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes , 2006, Oper. Res..

[74]  Michael B. Gordy A Risk-Factor Model Foundation for Ratings-Based Bank Capital Rules , 2003 .

[75]  Fabrizio Lillo,et al.  When Micro Prudence Increases Macro Risk: The Destabilizing Effects of Financial Innovation, Leverage, and Diversification , 2013, Oper. Res..

[76]  P. Brémaud,et al.  Power spectra of general shot noises and Hawkes point processes with a random excitation , 2002, Advances in Applied Probability.

[77]  Jeremy H. Large Measuring the resiliency of an electronic limit order book , 2007 .

[78]  Xiong Lin,et al.  Simulating Lévy Processes from Their Characteristic Functions and Financial Applications , 2011, TOMC.

[79]  Wanmo Kang,et al.  Exact Simulation of the Wishart Multidimensional Stochastic Volatility Model , 2013, Oper. Res..

[80]  Emmanuel Bacry,et al.  Modelling microstructure noise with mutually exciting point processes , 2011, 1101.3422.

[81]  A. Kakhbod,et al.  Information Choice and Amplification of Financial Crises , 2016 .

[82]  M. Minozzo,et al.  A Monte Carlo Approach to Filtering for a Class of Marked Doubly Stochastic Poisson Processes , 2006 .

[83]  G. Shedler,et al.  Simulation of Nonhomogeneous Poisson Processes by Thinning , 1979 .

[84]  W. R. Schucany,et al.  Generating Random Variates Using Transformations with Multiple Roots , 1976 .

[85]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[86]  Helmut Elsinger,et al.  Risk Assessment for Banking Systems , 2003, Manag. Sci..

[87]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[88]  Clive G. Bowsher Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Models , 2003 .

[89]  Darrell Duffie,et al.  Risk and Valuation of Collateralized Debt Obligations , 2001 .

[90]  Ulrike Goldschmidt,et al.  An Introduction To The Theory Of Point Processes , 2016 .

[91]  Jean Jacod,et al.  Testing whether jumps have finite or infinite activity , 2011, 1211.5219.

[92]  J. Leroy Folks,et al.  The Inverse Gaussian Distribution: Theory: Methodology, and Applications , 1988 .

[93]  D. Cox Some Statistical Methods Connected with Series of Events , 1955 .