Photonic crystal power dividers using L-shaped bend based on ring resonators

We propose a new type of two-dimensional photonic crystal power dividers based on ring resonators and directional couplers that can be applicable to photonic integrated circuits. The proposed power divider's mechanism is analogous to that of conventional waveguide directional couplers, utilizing coupling between guided modes supported by line defect waveguides. Based on the calculated position, a photonic crystal power divider is designed and verified by finite-difference time-domain computation. With low-loss bends based on ring resonators, a total transmission up to 99% is achieved. Different output power levels are achieved by changing the coupling length. Also the power in each branch can easily be further divided.