Three-dimensional stability analysis for slurry-filled trench wall in cohesionless soil

On the basis of the limiting equilibrium and arching theory, a three-dimensional analysis is proposed for slurry-supported trenches in cohesionless soils. This analytical approach is developed by considering the trench stability problem as a vertical soil cut within a fictitious half-silo with a rough wall surronding. Arching effects are considered not only in the vertical direction but also in the horizontal direction. A shell-shaped slip surface of the sliding soil mass is defined by Mohr-Coulomb criterion. The factor of safety is defines as the ratio of the resisting force induced by slurry pressure to the horizontal force required to maintain the stability of the trench wall. Results of the proposed method have been compared with those of two existing analytical methods for a typical trench stability problem. Key words: stability analysis, slurry trench wall, cohesionless soil.