Midbrain responses to electroreceptive input in catfish

Summary1.A limited region of the torus semicircularis in the midbrain of the catfish receives strong electroreceptive input. The electroreceptive region forms a 200–300 μm wide rostrocaudal band extending the length of the torus (Fig. 1). Tactile, auditory, and visual stimuli also influence unit activity in this region.2.The receptive fields of single units demonstrate a somatotopic organization of electroreceptive input, primarily from the contralateral body surface (Fig. 2): anterior body areas project to rostral torus, posterior body areas project to caudal torus.3.The electroreceptive evoked potential to a stimuluson oroff transient consists of a large negative wave, sometimes followed by a biphasic wave (Fig. 1c). The evoked potential amplitude increases logarithmically with stimulus intensity over a 65 db range (Fig. 4); EP latency decreases exponentially over this same range, its greatest rate of change being to stimuli of less than 100 μV/cm.4.The threshold stimulus intensity to elicit an evoked response, as extra-polated from amplitude versus intensity plots (Fig. 4) from the most sensitive region of the torus, is 0.6 μV/cm, which equals the behavioral detection threshold of catfish.5.The amplitude and latency of the evoked potential changes depending on the orientation of the electric field gradient ( $$\overrightarrow {\text{E}}$$ ) of the stimulus with respect to the fish (Fig. 5). For each torus region abest $$\overrightarrow E$$ can be found to which the response is maximal in amplitude and minimal in latency. At 90° to thisbest $$\overrightarrow E$$ orientation, the EP virtually disappears.6.Thebest $$\overrightarrow E$$ orientation changes parametrically with the rostrocaudal and mediolateral position of the recording site (Fig. 6). A possible mechanism responsible for $$\overrightarrow {\text{E}}$$ orientation preference is discussed.7.The occurrence of an electrical stimulus alters the excitability of the torus to subsequent electrical stimuli (Figs. 7 and 8). Twin pulse experiments show a period of response depression then facilitation following stimulus intensities greater than 500 μV/cm.

[1]  A. Roth Zur Funktionsweise der Elektrorezeptoren in der Haut von Welsen (Ictalurus): Der Einfluß der Ionen im Süßwasser , 1971, Zeitschrift für vergleichende Physiologie.

[2]  O. Ilyinsky,et al.  Some functional properties of central neurons connected with the lateral-line organs of the catfish (Ictalurus nebulosus) , 1973, Journal of comparative physiology.

[3]  Ad. J. Kalmijn,et al.  The Detection of Electric Fields from Inanimate and Animate Sources Other Than Electric Organs , 1974 .

[4]  R. Peters,et al.  Electric phenomena in the habitat of the catfishIctalurus nebulosus LeS , 1972, Journal of comparative physiology.

[5]  N Suga,et al.  Coding in tuberous and ampullary organs of a gymnotid electric fish , 1967, The Journal of comparative neurology.

[6]  C. H. Page Electrophysiological study of auditory responses in the goldfish brain. , 1970, Journal of neurophysiology.

[7]  H. O. Schwassmann Visual projection upon the optic tectum in foveate marine teleosts. , 1968, Vision research.

[8]  L. Kruger,et al.  Organization of the visual projection upon the optic tectum of some freshwater fish , 1965, The Journal of comparative neurology.

[9]  A. Roth Wozu dienen die Elektrorezeptoren der Welse? , 1972, Journal of comparative physiology.

[10]  A. Roth Central neurons involved in the electroreception of the catfishKryptopterus , 1975, Journal of comparative physiology.

[11]  Eric I. Knudsen,et al.  Behavioral thresholds to electric signals in high frequency electric fish , 1974, Journal of comparative physiology.

[12]  K. E. Machin,et al.  Electric Receptors in a Non-electric Fish (Clarias) , 1963, Nature.

[13]  A. Roth Elektrische Sinnesorgane beim Zwergwels Ictalurus nebulosus (Amiurus nebulosus) , 1969, Zeitschrift für vergleichende Physiologie.

[14]  A. Grinnell,et al.  Neural correlates of vertical localization by echo‐locating bats. , 1965, The Journal of physiology.

[15]  R. Peters,et al.  Electro-orientation in the passive electric catfish,Ictalurus nebulosus LeS , 1974, Journal of comparative physiology.

[16]  Jay M. Goldberg,et al.  SOME DISCHARGE CHARACTERISTICS OF SINGLE NEURONS IN THE INFERIOR COLLICULUS OF THE CAT. I. TONOTOPICAL ORGANIZATION, RELATION OF SPIKE-COUNTS TO TONE INTENSITY, AND FIRING PATTERNS OF SINGLE ELEMENTS , 1963 .

[17]  R. J. A. Buwalda,et al.  Frequency response of the electroreceptors (“small pit organs”) of the catfish,Ictalurus nebulosus LeS , 1972, Journal of comparative physiology.

[18]  T. Bullock,et al.  Comparison of electroreceptor, mechanoreceptor and optic evoked potentials in the brain of some rays and sharks , 1974, Journal of comparative physiology.

[19]  T Szabo,et al.  Electroreceptor mechanisms in a high-frequency weakly electric fish, Sternarchus albifrons. , 1965, Journal of neurophysiology.

[20]  R. Peters,et al.  Distribution of electroreceptors, bioelectric field patterns, and skin resistance in the catfish,Ictalurus nebulosus LeS , 1974, Journal of comparative physiology.

[21]  H. D. Potter,et al.  Patterns of acoustically evoked discharges of neurons in the mesencephalon of the bullfrog. , 1965, Journal of neurophysiology.

[22]  S. Dijkgraaf,et al.  Electroreception in the catfish,Amiurus nebulosus , 1968, Experientia.