Independence free graphs and vertex connectivity augmentation
暂无分享,去创建一个
[1] Robert E. Tarjan,et al. Augmentation Problems , 1976, SIAM J. Comput..
[2] András Frank,et al. Minimal Edge-Coverings of Pairs of Sets , 1995, J. Comb. Theory B.
[3] Tibor Jordán,et al. A Note on the Vertex-Connectivity Augmentation Problem , 1997, J. Comb. Theory, Ser. B.
[4] Ming-Yang Kao,et al. Scan-First Search and Sparse Certificates: An Improved Parallel Algorithms for k-Vertex Connectivity , 1993, SIAM J. Comput..
[5] Akira Nakamura,et al. Edge-Connectivity Augmentation Problems , 1987, J. Comput. Syst. Sci..
[6] Joseph Cheriyan,et al. Fast Algorithms for k-Shredders and k-Node Connectivity Augmentation , 1999, J. Algorithms.
[7] W. Mader. Ecken vom Gradn in minimalenn-fach zusammenhängenden Graphen , 1972 .
[8] Tibor Jordán,et al. Extremal graphs in connectivity augmentation , 1999, J. Graph Theory.
[9] Bill Jackson,et al. Non-Separable Detachments of Graphs , 2001, Electron. Notes Discret. Math..
[10] Akira Nakamura,et al. A Minimum 3-Connectivity Augmentation of a Graph , 1993, J. Comput. Syst. Sci..
[11] Tibor Jordán,et al. How to make a graph four-connected , 1999, Math. Program..
[12] Hiroshi Nagamochi. Recent development of graph connectivity augmentation algorithms , 2000 .
[13] Tibor Jordán,et al. On the Optimal Vertex-Connectivity Augmentation , 1995, J. Comb. Theory B.
[14] S. Hakimi. On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph. I , 1962 .
[15] T. Hsu,et al. On four-connecting a triconnected graph , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[16] Guo-Ray Cai,et al. The minimum augmentation of any graph to a K-edge-connected graph , 1989, Networks.
[17] András Frank. Augmenting Graphs to Meet Edge-Connectivity Requirements , 1992, SIAM J. Discret. Math..
[18] Bill Jackson,et al. A Near Optimal Algorithm for Vertex Connectivity Augmentation , 2000, ISAAC.
[19] Hiroshi Nagamochi,et al. On the Minimum Augmentation of an l-Connected Graph to a k-Connected Graph , 2000, SWAT.