Dynamic information routing in complex networks

Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function.

[1]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[2]  A. Winfree The geometry of biological time , 1991 .

[3]  Jonathan D. Power,et al.  Intrinsic and Task-Evoked Network Architectures of the Human Brain , 2014, Neuron.

[4]  Albert Y. Zomaya,et al.  Local information transfer as a spatiotemporal filter for complex systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[6]  Gustavo Deco,et al.  Role of local network oscillations in resting-state functional connectivity , 2011, NeuroImage.

[7]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[8]  Peter Krusche,et al.  Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle , 2014, Proceedings of the National Academy of Sciences.

[9]  Swinney,et al.  Information transport in spatiotemporal systems. , 1988, Physical review letters.

[10]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[11]  Yoji Kawamura,et al.  Collective phase sensitivity. , 2008, Physical review letters.

[12]  J. Hasty,et al.  Synchronizing genetic relaxation oscillators by intercell signaling , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Takeshi Norimatsu,et al.  Encoding and Decoding , 2016 .

[14]  M. Newman Communities, modules and large-scale structure in networks , 2011, Nature Physics.

[15]  L. Tsimring,et al.  Accurate information transmission through dynamic biochemical signaling networks , 2014, Science.

[16]  Hiroshi Kori,et al.  Engineering Complex Dynamical Structures: Sequential Patterns and Desynchronization , 2007, Science.

[17]  G. Lahav,et al.  Encoding and Decoding Cellular Information through Signaling Dynamics , 2013, Cell.

[18]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[19]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[20]  Albert-László Barabási,et al.  The sound of many hands clapping: Tumultuous applause can transform itself into waves of synchronized clapping. , 2000 .

[21]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[22]  S. Strogatz Exploring complex networks , 2001, Nature.

[23]  Rodrigo F. Salazar,et al.  Content-Specific Fronto-Parietal Synchronization During Visual Working Memory , 2012, Science.

[24]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[25]  B. Goodwin,et al.  An Entrainment Model for Timed Enzyme Syntheses in Bacteria , 1966, Nature.

[26]  S. P. Cornelius,et al.  Realistic control of network dynamics , 2013, Nature Communications.

[27]  Karl J. Friston Functional and Effective Connectivity: A Review , 2011, Brain Connect..

[28]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[29]  Hoppensteadt,et al.  Synchronization of laser oscillators, associative memory, and optical neurocomputing , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Annette Witt,et al.  Dynamic Effective Connectivity of Inter-Areal Brain Circuits , 2011, PLoS Comput. Biol..

[31]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[33]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[34]  Kathy Chen,et al.  Network dynamics and cell physiology , 2001, Nature Reviews Molecular Cell Biology.

[35]  Ofer Feinerman,et al.  Reliable neuronal logic devices from patterned hippocampal cultures , 2008 .

[36]  E.Korutcheva,et al.  A DIAGRAMMATIC APPROACH TO STUDY THE INFORMATION TRANSFER IN WEAKLY NONLINEAR CHANNELS , 2002 .

[37]  M. Kramer,et al.  Beyond the Connectome: The Dynome , 2014, Neuron.

[38]  G Bard Ermentrout,et al.  Stochastic phase reduction for a general class of noisy limit cycle oscillators. , 2009, Physical review letters.

[39]  Dietmar Plenz,et al.  The organization of strong links in complex networks , 2011, Nature Physics.

[40]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[41]  Carmena Jose,et al.  Oscillatory phase coupling coordinates anatomically-dispersed functional cell assemblies , 2011 .

[42]  Jon Crowcroft,et al.  A survey and comparison of peer-to-peer overlay network schemes , 2005, IEEE Communications Surveys & Tutorials.

[43]  Gerhard Goos,et al.  Ambient Intelligence , 2015, Lecture Notes in Computer Science.

[44]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[45]  Arthur Gretton,et al.  Low-Frequency Local Field Potentials and Spikes in Primary Visual Cortex Convey Independent Visual Information , 2008, The Journal of Neuroscience.

[46]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[47]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[48]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[49]  Friedrich T. Sommer,et al.  Information transmission in oscillatory neural activity , 2008, Biological Cybernetics.

[50]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[51]  Marc Timme,et al.  Guaranteeing global synchronization in networks with stochastic interactions , 2012 .

[52]  W. Bialek,et al.  Information flow and optimization in transcriptional regulation , 2007, Proceedings of the National Academy of Sciences.

[53]  Andrew J. Majda,et al.  Information flow between subspaces of complex dynamical systems , 2007, Proceedings of the National Academy of Sciences.

[54]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[55]  Richard Kleeman,et al.  Information transfer between dynamical system components. , 2005, Physical review letters.

[56]  Paul François,et al.  Scaling of embryonic patterning based on phase-gradient encoding , 2012, Nature.

[57]  G. Edelman,et al.  Complexity and coherency: integrating information in the brain , 1998, Trends in Cognitive Sciences.

[58]  A. Goldbeter Computational approaches to cellular rhythms , 2002, Nature.

[59]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[60]  Dimitri M. Kullmann,et al.  Oscillatory multiplexing of population codes for selective communication in the mammalian brain , 2014, Nature Reviews Neuroscience.

[61]  Ian H. Stevenson,et al.  Spatially Distributed Local Fields in the Hippocampus Encode Rat Position , 2014, Science.

[62]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[63]  M. Bennett,et al.  A fast, robust, and tunable synthetic gene oscillator , 2008, Nature.

[64]  A. Wagner Circuit topology and the evolution of robustness in two-gene circadian oscillators. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.