Trace element emissions from coal-fired power plants

[1]  Weilin Zhang,et al.  NH3 inhibits mercury oxidation over low-temperature MnOx/TiO2 SCR catalyst , 2018, Fuel Processing Technology.

[2]  Y. Duan,et al.  Emission characteristic and transformation mechanism of hazardous trace elements in a coal-fired power plant , 2018 .

[3]  Chenghang Zheng,et al.  Speciation Characteristics and Mobility of Trace Elements Across Ultralow Emission Air Pollution Control Devices , 2017 .

[4]  Y. Duan,et al.  Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury. , 2017, Environmental pollution.

[5]  P. Córdoba Partitioning and speciation of selenium in wet limestone flue gas desulphurisation systems: A review , 2017 .

[6]  Carlos E. Romero,et al.  Effect of Coordinated Air Pollution Control Devices in Coal-Fired Power Plants on Arsenic Emissions , 2017 .

[7]  Y. Duan,et al.  Study on the mercury emission and transformation in an ultra-low emission coal-fired power plant , 2017 .

[8]  Y. Duan,et al.  Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 2. arsenic, chromium, barium, manganese, lead. , 2017, Environmental pollution.

[9]  K. Cen,et al.  Partitioning of Hazardous Trace Elements among Air Pollution Control Devices in Ultra-Low-Emission Coal-Fired Power Plants , 2017 .

[10]  Yongchun Zhao,et al.  Migration and emission characteristics of Hg in coal-fired power plant of China with ultra low emission air pollution control devices , 2017 .

[11]  Junying Zhang,et al.  Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2. , 2017, Journal of environmental sciences.

[12]  Liang Cai,et al.  Characteristics of a biomass-based sorbent trap and its application to coal-fired flue gas mercury emission monitoring , 2017 .

[13]  RajenderKumar Gupta,et al.  Mercury co-beneficial capture in air pollution control devices of coal-fired power plants , 2017 .

[14]  G. Zeng,et al.  Simultaneous removal of elemental mercury and NO in simulated flue gas over V2O5/ZrO2-CeO2 catalyst , 2016 .

[15]  Yan Wang,et al.  Simultaneous removal of elemental mercury and NO from simulated flue gas using a CeO2 modified V2O5–WO3/TiO2 catalyst , 2016 .

[16]  Yufeng Duan,et al.  Migration and Emission Characteristics of Trace Elements in a 660 MW Coal-Fired Power Plant of China , 2016 .

[17]  J. D. McCain,et al.  Selenium Partitioning and Removal Across a Wet FGD Scrubber at a Coal-Fired Power Plant. , 2015, Environmental science & technology.

[18]  Liqing Li,et al.  CuO–CeO2/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation at low temperatures , 2015 .

[19]  Minghou Xu,et al.  Mercury oxidized by V2O5–MoO3/TiO2 under multiple components flue gas: An actual coal-fired power plant test and a laboratory experiment , 2015 .

[20]  Minghou Xu,et al.  Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants , 2015 .

[21]  Xiangfeng Wang,et al.  Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China , 2014 .

[22]  M. Izquierdo,et al.  Influence of temperature and regeneration cycles on Hg capture and efficiency by structured Au/C regenerable sorbents. , 2013, Journal of hazardous materials.

[23]  Hai-Long Li,et al.  Impact of SO2 on elemental mercury oxidation over CeO2–TiO2 catalyst , 2013 .

[24]  M. Díaz-Somoano,et al.  Effect of adding aluminum salts to wet FGD systems upon the stabilization of mercury , 2012 .

[25]  Guijian Liu,et al.  Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China , 2012 .

[26]  Y. Seo,et al.  Oxidation, reemission and mass distribution of mercury in bituminous coal-fired power plants with SCR, CS-ESP and wet FGD , 2012 .

[27]  Xavier Querol,et al.  Partitioning of trace inorganic elements in a coal-fired power plant equipped with a wet Flue Gas Desulphurisation system , 2012 .

[28]  M. A. López-Antón,et al.  Distribution of Trace Elements from a Coal Burned in Two Different Spanish Power Stations , 2011 .

[29]  A. Tobías,et al.  Enrichment of inorganic trace pollutants in re-circulated water streams from a wet limestone flue ga , 2011 .

[30]  Jiming Hao,et al.  Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007. , 2011, The Science of the total environment.

[31]  S. Sahu,et al.  Distribution of trace elements in coal and combustion residues from five thermal power plants in India , 2011 .

[32]  Hai-Long Li,et al.  Oxidation and capture of elemental mercury over SiO2–TiO2–V2O5 catalysts in simulated low-rank coal combustion flue gas , 2011 .

[33]  Zs S. Li,et al.  Investigation on elemental mercury oxidation mechanism by non-thermal plasma treatment , 2010 .

[34]  Jeong-Hun Kim,et al.  Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea , 2009 .

[35]  H. Stenger,et al.  Effect of halogens on mercury conversion in SCR catalysts , 2008 .

[36]  Xuchang Xu,et al.  Mercury emissions from six coal-fired power plants in China , 2008 .

[37]  G. Sakellaropoulos,et al.  Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor. , 2008, Journal of hazardous materials.

[38]  Toshiyuki Naito,et al.  Mercury Oxidation over the V2O5(WO3)/TiO2 Commercial SCR Catalyst , 2008 .

[39]  W. Namkung,et al.  Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process. , 2008, Chemosphere.

[40]  Richard R. Liggett,et al.  Impacts of acid gases on mercury oxidation across SCR catalyst , 2007 .

[41]  Chen Lei,et al.  Mercury transformation across particulate control devices in six power plants of China: The co-effect of chlorine and ash composition , 2007 .

[42]  X. Querol,et al.  Environmental impact of a coal combustion-desulphurisation plant: abatement capacity of desulphurisation process and environmental characterisation of combustion by-products. , 2006, Chemosphere.

[43]  Zongyuan Chen,et al.  Mercury Oxidization in Dielectric Barrier Discharge Plasma System , 2006 .

[44]  C. Zheng,et al.  [Characterization of arsenic emissions from a coal-fired power plant]. , 2004, Huan jing ke xue= Huanjing kexue.

[45]  R. T. Yang,et al.  MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures , 2004 .

[46]  Lixiong Li,et al.  Supercritical Water Oxidation of NH3 over a MnO2/CeO2 Catalyst , 1998 .

[47]  Chuguang Zheng,et al.  Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma , 2017 .

[48]  Minghou Xu,et al.  Measurement of particulate matter and trace elements from a coal-fired power plant with electrostatic precipitators equipped the low temperature economizer , 2015 .

[49]  Xu Yueyan Research on Mercury Collaborative Control by Conventional Pollutants Purification Facilities of Coal-fired Power Plants , 2014 .

[50]  N. Lu,et al.  Oxidation of Elemental Mercury by Active Species Generated From a Surface Dielectric Barrier Discharge Plasma Reactor , 2013, Plasma Chemistry and Plasma Processing.