On a finite element scheme based on the discrete Kirchhoff assumption

SummaryA justification of a finite element scheme for plate bending problems is presented. The finite element treated here is the triangular element proposed by Stricklinet al. and Dhatt using the discrete Kirchhoff assumption. Some error estimates are derived for the finite element solutions of static and eigenvalue problems with the homogeneous Dirichlet conditions. Numerical experiments are also performed to see the validity of the theory.

[1]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[2]  J. Nitsche,et al.  Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens , 1968 .

[3]  Claes Johnson,et al.  On the convergence of a mixed finite-element method for plate bending problems , 1973 .

[4]  Tetsuhiko Miyoshi Convergence of Finite Element Solutions Represented by a Non-conforming Basis , 1972 .

[5]  J. Bramble,et al.  Triangular elements in the finite element method , 1970 .

[6]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[7]  Sigeru Mizohata The Theory of Partial Differential Equations , 1973 .

[8]  J. A. Stricklin,et al.  A rapidly converging triangular plate element , 1969 .

[9]  J. Bramble,et al.  Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .

[10]  Triangular Finite Element for Plate Bending Analysis with Transverse Shear Deformation , 1971 .

[11]  Y. Ando,et al.  On the convergence of a mixed finite element scheme for plate bending , 1973 .

[12]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .

[13]  D. A. Kross,et al.  Finite-Element Analysis of Thin Shells , 1968 .

[14]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[15]  S. G. Mikhlin,et al.  The problem of the minimum of a quadratic functional , 1965 .

[16]  Miloš Zlámal,et al.  On the finite element method , 1968 .

[17]  Theodore H. H. Pian,et al.  Basis of finite element methods for solid continua , 1969 .

[18]  G. Dhatt,et al.  An efficient triangular shell element , 1970 .

[19]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .