Effect of feed flow pattern on the distribution of permeate fluxes in desalination by direct contact membrane distillation

Abstract The current study aims to highlight the effect of flow pattern on the variations of permeate fluxes over the membrane surface during desalination in a direct contact membrane distillation (DCMD) flat module. To do so, a three dimensional (3D) Computational Fluid Dynamics (CFD) model with embedded pore scale calculations is implemented to predict flow, heat and mass transfer in the DCMD module. Model validation is carried out in terms of average permeate fluxes with experimental data of seawater desalination using two commercially available PTFE membranes. Average permeate fluxes agree within 6% and less with experimental values without fitting parameters. Simulation results show that the distribution of permeate fluxes and seawater salinity over the membrane surface are strongly dependent on momentum and heat transport and that temperature and concentration polarization follow closely the flow distribution. The analysis reveals a drastic effect of recirculation loops and dead zones on module performance and recommendations to improve MD flat module design are drawn consequently.

[1]  Enrico Drioli,et al.  Open-source predictive simulators for scale-up of direct contact membrane distillation modules for seawater desalination , 2017 .

[2]  Rosli Mohd Yunus,et al.  A CFD study on the effect of spacer orientation on temperature polarization in membrane distillation modules , 2012 .

[3]  Noreddine Ghaffour,et al.  Experimental and theoretical analyses of temperature polarization effect in vacuum membrane distillation , 2014 .

[5]  J. Lienhard,et al.  Erratum to Thermophysical properties of seawater: A review of existing correlations and data , 2010 .

[6]  Andrea Cipollina,et al.  Modelling flow and heat transfer in spacer-filled membrane distillation channels using open source CFD code , 2013 .

[7]  T. Mohammadi,et al.  Simulation of momentum, heat and mass transfer in direct contact membrane distillation: A computational fluid dynamics approach , 2015 .

[8]  Ahmad Fauzi Ismail,et al.  Computational Fluid Dynamic (CFD) opportunities applied to the membrane distillation process: State-of-the-art and perspectives , 2016 .

[9]  Hsuan Chang,et al.  Theoretical and Experimental Studies of a Compact Multiunit Direct Contact Membrane Distillation Module , 2016 .

[10]  M. Qtaishat,et al.  Heat and mass transfer analysis in direct contact membrane distillation , 2008 .

[11]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[12]  Ching-Jen Chen,et al.  Fundamentals of turbulence modeling , 1998 .

[13]  Noreddine Ghaffour,et al.  Modeling of air-gap membrane distillation process: A theoretical and experimental study , 2013 .

[14]  Mohamed Khayet,et al.  Modelling mass transport through a porous partition: Effect of pore size distribution , 2004 .

[15]  Michele Ciofalo,et al.  Experimental and computational investigation of heat transfer in channels filled by woven spacers , 2017 .

[16]  N. Hilal,et al.  Membrane distillation: A comprehensive review , 2012 .

[17]  Robert W. Field,et al.  Novel method for the design and assessment of direct contact membrane distillation modules , 2016 .

[18]  Dominique Derome,et al.  Determination of surface convective heat transfer coefficients by CFD , 2007 .

[19]  D. R. Lloyd,et al.  Membrane distillation. II. Direct contact MD , 1996 .

[20]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[21]  Noreddine Ghaffour,et al.  Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions , 2014 .

[22]  Lucio Rizzuti,et al.  CFD simulation of a membrane distillation module channel , 2009 .

[23]  Z. Koza,et al.  Tortuosity-porosity relation in porous media flow. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  M. Moraveji,et al.  CFD simulation of heat and mass transport for water transfer through hydrophilic membrane in direct-contact membrane distillation process , 2016 .

[25]  M. Ozisik Heat Transfer: A Basic Approach , 1984 .

[26]  A. Criscuoli Improvement of the Membrane Distillation performance through the integration of different configurations , 2016 .

[27]  V. Chen,et al.  A numerical approach to module design for crossflow vacuum membrane distillation systems , 2016 .

[28]  Hsuan Chang,et al.  CFD Study of Heat Transfer Enhanced Membrane Distillation Using Spacer-Filled Channels☆ , 2015 .

[29]  Iqbal Ahmed,et al.  A CFD study of heat transfer through spacer channels of membrane distillation modules , 2013 .

[30]  Noreddine Ghaffour,et al.  Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane , 2015 .

[31]  J. Smith,et al.  Introduction to chemical engineering thermodynamics , 1949 .

[32]  J. Koschikowski,et al.  Comparative analysis of full-scale membrane distillation contactors - methods and modules , 2017 .

[33]  Hsuan Chang,et al.  CFD Simulation of Direct Contact Membrane Distillation Modules with Rough Surface Channels , 2015 .

[34]  M. Sharif,et al.  Evaluation of Turbulence Models in the Prediction of Heat Transfer Due to Slot Jet Impingement on Plane and Concave Surfaces , 2009 .

[35]  E. Drioli,et al.  Membrane Distillation and Related Operations—A Review , 2005 .

[36]  M. Khayet Membranes and theoretical modeling of membrane distillation: a review. , 2011, Advances in colloid and interface science.

[37]  Anthony G. Fane,et al.  Heat transport and membrane distillation coefficients in direct contact membrane distillation , 2003 .

[38]  Ingmar Nopens,et al.  Modelling approaches in membrane distillation: A critical review , 2015 .

[39]  S. Upadhyaya,et al.  Mathematical and CFD modeling of vacuum membrane distillation for desalination , 2016 .

[40]  Anthony G. Fane,et al.  Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation , 2003 .

[41]  Ratana Jiraratananon,et al.  Direct contact membrane distillation: effect of mass transfer on heat transfer , 2001 .

[42]  N. Ghaffour,et al.  Material gap membrane distillation: A new design for water vapor flux enhancement , 2013 .

[43]  D. Caldwell Thermal conductivity of sea water , 1974 .

[44]  Xing Yang,et al.  Analysis of heat and mass transfer by CFD for performance enhancement in direct contact membrane distillation , 2012 .

[45]  Lucio Rizzuti,et al.  Membrane distillation heat transfer enhancement by CFD analysis of internal module geometry , 2011 .

[46]  Xing Yang,et al.  Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow , 2011 .

[47]  A. Katsandri A theoretical analysis of a spacer filled flat plate membrane distillation modules using CFD: Part I: velocity and shear stress analysis , 2017 .

[48]  Raed Hashaikeh,et al.  Theoretical and experimental study of direct contact membrane distillation , 2016 .