CFD simulation of stirred tanks: Comparison of turbulence models (Part II: Axial flow impellers, multiple impellers and multiphase dispersions)

In the first part of the review, published literature regarding the CFD modelling of single-phase turbulent flow in stirred tank reactors with radial flow impellers was critically analysed. A brief overview of different turbulence models (standard k − e model, RNG k − e model, the Reynolds stress model and large eddy simulation) as well as impeller baffle interaction models has been presented in the previous part. This part is concerned with the review of literature regarding CFD simulation of axial flow impellers. Comprehensive simulations have been carried out using various turbulence models and the model predictions (of all the mean velocities, turbulent kinetic energy and its dissipation rate) have been compared with the experimental measurements at various locations in the tank. The strengths and weaknesses of various turbulence models for axial flow impellers is presented. The quantitative comparison of exact and modelled turbulence production, transport and dissipation terms has highlighted the reasons behind the partial success of various modifications of standard k − e model as well as Reynolds stress model. Literature efforts on multiple impeller systems and multiphase systems have been discussed in a separate section. Based on these results, suggestions have been made for the future work in this area. Dans la premiere partie de l'etude, on a procede a une analyse critique de la litterature concernant la modelisation de la dynamique des fluides numerique de l'ecoulement turbulent a une phase dans les reacteurs a cuve agitee dotes de turbines a ecoulement radial. Une vue d'ensemble rapide des differents modeles de turbulence (modele standard k-e, modele RNG k-e, modele aux tensions de Reynolds et simulation des grandes echelles), ainsi que des modeles d'interaction des deflecteurs de turbine, a ete presentee dans la partie precedente. Cette partie se concentre sur l'analyse de la litterature concernant la simulation de DFN de turbines a ecoulement axial. Des simulations completes ont ete effectuees en utilisant plusieurs modeles de turbulence et les predictions des modeles (de toutes les vitesses moyennes, de l'energie cinetique turbulente et de son taux de dissipation) ont ete comparees aux donnees experimentales relevees a differents endroits de la cuve. On a presente les points forts et les points faibles de plusieurs modeles de turbulence concernant les turbines a ecoulement axial. La comparaison quantitative des donnees exactes et modelisees de la production, du transport et de la dissipation de la turbulence a mis en evidence les raisons qui expliquent la reussite partielle de plusieurs modifications apportees au modele standard k-e ainsi qu'au modele aux tensions de Reynolds. Une partie distincte est consacree a la discussion des resultats indiques dans la litterature concernant les systemes a roues multiples et les systemes multiphases. Sur la base de ces resultats, des etudes a venir dans ce domaine ont ete suggerees. © 2011 Canadian Society for Chemical Engineering

[1]  Margono,et al.  Effect of Particle Size on Simulation of Three-Dimensional Solid Dispersion in Stirred Tank , 2001 .

[2]  Jyeshtharaj B. Joshi,et al.  Optimization of impeller design for gas inducing type mechanically agitated contactors , 1995 .

[3]  Jyeshtharaj B. Joshi,et al.  Prediction of Flow Pattern in Stirred Tanks: New Constitutive Equation for Eddy Viscosity , 2001 .

[4]  Jyeshtharaj B. Joshi,et al.  Relation between flow pattern and blending in stirred tanks , 1999 .

[5]  Stuart E. Rogers,et al.  Steady and unsteady computation of impeller‐stirred reactors , 1996 .

[6]  Mattias Ljungqvist,et al.  Numerical Simulation of the Two-Phase Flow in an Axially Stirred Vessel , 2001 .

[7]  H.E.A. van den Akker,et al.  Gas-liquid contacting with axial flow impellers , 1994 .

[8]  Jyeshtharaj B. Joshi,et al.  Hollow self-inducing impellers: Flow visualization and CFD simulation , 2007 .

[9]  Sonja Schmelter,et al.  Modeling, analysis, and numerical solution of stirred liquid–liquid dispersions , 2008 .

[10]  J. Joshi,et al.  Liquid-phase mixing in stirred vessels: turbulent flow regime , 2003 .

[11]  Vivek V. Ranade,et al.  Flow generated by a disc turbine. II: Mathematical modelling and comparison with experimental data , 1990 .

[12]  M. Jahoda,et al.  CFD Prediction of Flow and Homogenization in a Stirred Vessel: Part II Vessel with Three and Four Impellers , 2005 .

[13]  Zdzisław Jaworski,et al.  Modelling of the Turbulent Wall Jet Generated by a Pitched Blade Turbine Impeller: The Effect of Turbulence Model , 2002 .

[14]  Christoph Kohnen,et al.  Measurement and Simulation of Fluid Flow in Agitated Solid/Liquid Suspensions , 2001 .

[15]  Catherine Xuereb,et al.  Effect of Axial Agitator Configuration (Up-Pumping, Down-Pumping, Reverse Rotation) on Flow Patterns Generated in Stirred Vessels , 2001 .

[16]  Kevin J. Myers,et al.  The laminar and turbulent flow pattern of a pitched blade turbine , 1996 .

[17]  Vivek V. Ranade,et al.  Computational fluid dynamics for designing process equipment: Expectations, current status, and path forward , 2003 .

[18]  Alberto Brucato,et al.  Dense solid–liquid off-bottom suspension dynamics: Simulation and experiment , 2009 .

[19]  Ivan Fort Comments on ¿The role of convection and turbulent dispersion in blending¿ by A.W. Patwardhan, A.B. Pandit and J.B. Joshi , 2004 .

[20]  M. Jahoda,et al.  CFD prediction of liquid homogenisation in a gas–liquid stirred tank , 2009 .

[21]  Guillaume Delaplace,et al.  Experimental and CFD Simulation of Heat Transfer to Highly Viscous Fluids in an Agitated Vessel Equipped With a non Standard Helical Ribbon Impeller , 2001 .

[22]  Vivek V. Ranade,et al.  Computational snapshot of flow generated by axial impellers in baffled stirred vessels , 1996 .

[23]  Vivek V. Ranade,et al.  Gas–liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations , 2005 .

[24]  J. Derksen Long-time Solids Suspension Simulations by Means of a Large-Eddy Approach , 2006 .

[25]  A. Ochieng,et al.  Nickel solids concentration distribution in a stirred tank , 2006 .

[26]  Jyeshtharaj B. Joshi,et al.  Mass-Transfer Characteristics of Surface Aerators and Gas-Inducing Impellers , 2004 .

[27]  J. Aubin,et al.  Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme , 2004 .

[28]  Hüseyin Yapici,et al.  CFD modeling of conjugate heat transfer and homogeneously mixing two different fluids in a stirred and heated hemispherical vessel , 2004, Comput. Chem. Eng..

[29]  L. Fuchs,et al.  Numerical simulation of a gas-liquid Rushton stirred reactor - LES and LPT , 2008 .

[30]  Milorad P. Dudukovic,et al.  Evaluation of large Eddy simulation and Euler‐Euler CFD models for solids flow dynamics in a stirred tank reactor , 2008 .

[31]  G. Micale,et al.  CFD Simulation of Particle Suspension Height in Stirred Vessels , 2004 .

[32]  J. C. Godfrey,et al.  CFD Simulation of Particle Distribution in Stirred Vessels , 2000 .

[33]  Catherine Xuereb,et al.  3-D hydrodynamics in a tank stirred by a double-propeller system and filled with a liquid having evolving rheological properties , 1996 .

[34]  Y. Xu,et al.  CFD predictions of stirred tank flows , 1996 .

[35]  G. Q. Martin,et al.  Gas-Inducing Agitator , 1972 .

[36]  Jyeshtharaj B. Joshi,et al.  Mass transfer and hydrodynamic characteristics of gas inducing type of agitated contactors , 1977 .

[37]  Kevin J. Myers,et al.  A Digital Particle Image Velocimetry Investigation of Flow Field Instabilities of Axial-Flow Impellers , 1997 .

[38]  Laszlo Fuchs,et al.  Influence of impeller type on the flow structure in a stirred reactor , 2000 .

[39]  Gopal R. Kasat,et al.  Computational Fluid Dynamics Simulation of the Solid Suspension in a Stirred Slurry Reactor , 2006 .

[40]  Jyeshtharaj B. Joshi,et al.  Effect of Internals on the Flow Pattern and Mixing in Stirred Tanks , 2005 .

[41]  T. Nurtono,et al.  Macro-instability characteristic in agitated tank based on flow visualization experiment and large eddy simulation , 2009 .

[42]  A. D. Gosman,et al.  Multidimensional modeling of turbulent two‐phase flows in stirred vessels , 1992 .

[43]  Vivek V. Ranade,et al.  CFD predictions of flow near impeller blades in baffled stirred vessels: Assessment of computational snapshot approach , 2002 .

[44]  R. I. Issa,et al.  Modelling of dispersed bubble and droplet flow at high phase fractions , 2004 .

[45]  Jyeshtharaj B. Joshi,et al.  OPTIMUM DESIGN OF STATOR-ROTOR ASSEMBLY IN GAS INDUCING TYPE MECHANICALLY AGITATED REACTORS , 1999 .

[46]  G. Micale,et al.  Experiments and CFD predictions of solid particle distribution in a vessel agitated with four pitched blade turbines , 2001 .

[47]  Jyeshtharaj B. Joshi,et al.  CFD modelling and mixing in stirred tanks , 1999 .

[48]  H. Svendsen,et al.  Theoretical model for drop and bubble breakup in turbulent dispersions , 1996 .

[49]  Vivek V. Ranade,et al.  CFD simulations to study shortstopping runaway reactions in a stirred vessel , 2004 .

[50]  Daniele Marchisio,et al.  Two-scale simulation of mass transfer in an agitated gas-liquid tank , 2007 .

[51]  Jyeshtharaj B. Joshi,et al.  Fractional gas hold-up in gas inducing type of mechanically agitated contactors , 1996 .

[52]  Vivek V. Ranade,et al.  CFD simulation of liquid-phase mixing in solid–liquid stirred reactor , 2008 .

[53]  Aniruddha B. Pandit,et al.  Mechanically agitated gas-liquid reactors , 1982 .

[54]  Vivek V. Ranade,et al.  CFD simulation of shortstopping runaway reactions in vessels agitated with impellers and jets , 2006 .

[55]  J. M. Smith,et al.  Numerical Simulation of Gas Dispersion in an Aerated Stirred Reactor with Multiple Impellers , 2008 .

[56]  J. Kuipers,et al.  Dynamic simulation of dispersed gas-liquid two phase flow using a discrete bubble model. , 1996 .

[57]  Albert D. Harvey,et al.  Experimental and Computational Study of Multiple Impeller Flows , 1997 .

[58]  Nicholas C. S. Kee,et al.  CFD Simulation of Solids Suspension in Mixing Vessels , 2008 .

[59]  H. Blanch,et al.  Bubble coalescence and break‐up in air‐sparged bubble columns , 1990 .

[60]  Eugeniusz Molga,et al.  Safety aspects in modelling and operating of batch and semibatch stirred tank chemical reactors , 2010 .

[61]  Swapnil S. Patil,et al.  Stability of gas-inducing type impellers , 1999 .

[62]  K. Pericleous,et al.  The modelling of tangential and axial agitators in chemical reactors , 1987 .

[63]  G. Montante,et al.  Mixed Solids Distribution in Stirred Vessels: Experiments and Computational Fluid Dynamics Simulations , 2007 .

[64]  Sumanta Acharya,et al.  Simulation of laminar and turbulent impeller stirred tanks using immersed boundary method and large eddy simulation technique in multi-block curvilinear geometries , 2007 .

[65]  Kevin J. Roberts,et al.  Scale up study of retreat curve impeller stirred tanks using LDA measurements and CFD simulation. , 2005 .

[66]  J. Joshi,et al.  Critical impeller speed for solid suspension in mechanically agitated contactors , 1988 .

[67]  Gary B. Tatterson,et al.  Fluid mixing and gas dispersion in agitated tanks , 1991 .

[68]  Jyeshtharaj B. Joshi,et al.  Computational flow modelling and design of bubble column reactors , 2001 .

[69]  Jyeshtharaj B. Joshi,et al.  Optimum design of multiple-impeller self-inducing system , 2003 .

[70]  Franco Magelli,et al.  Experimental and computational analysis of immiscible liquid–liquid dispersions in stirred vessels , 2009 .

[71]  Vivek V. Ranade,et al.  Gas–liquid flow in stirred reactors: Trailing vortices and gas accumulation behind impeller blades , 1999 .

[72]  A. Bakker,et al.  Modelling of Turbulence in Stirred Vessels Using Large Eddy Simulation , 2004 .

[73]  Vivek V. Ranade,et al.  Simulation of flows in stirred vessels agitated by dual rushton impellers using computational snapshot approach , 2003 .

[74]  D. Pinelli,et al.  Dispersion coefficients and settling velocities of solids in slurry vessels stirred with different types of multiple impellers , 2004 .

[75]  Leo Chau-Kuang Liau,et al.  Thermal Degradation of Poly(vinylbutyral)/Ceramic Composites: A Kinetic Approach , 1998 .

[76]  Jyeshtharaj B. Joshi,et al.  Gas Induction Characteristics of Hollow Self-Inducing Impeller , 2006 .

[77]  Ville Alopaeus,et al.  Modelling local bubble size distributions in agitated vessels , 2007 .

[78]  Zoltan K. Nagy,et al.  Modelling of mass transfer in gas–liquid stirred tanks agitated by Rushton turbine and CD-6 impeller: A scale-up study , 2009 .

[79]  Catherine Xuereb,et al.  CFD analysis of industrial multi-staged stirred vessels , 2006 .

[80]  S. Kresta,et al.  Impact of tank geometry on the maximum turbulence energy dissipation rate for impellers , 1996 .

[81]  Catherine Xuereb,et al.  Gas−Liquid Flow Generated by a Pitched-Blade Turbine: Particle Image Velocimetry Measurements and Computational Fluid Dynamics Simulations , 2003 .

[82]  T. Srinivasa,et al.  An Eulerian/Lagrangian study of solid suspension in stirred tanks , 2007 .

[83]  Michael Yianneskis,et al.  Trailing vortices around a 45° pitched‐blade impeller , 1998 .

[84]  Aniruddha B. Pandit,et al.  The role of convection and turbulent dispersion in blending , 2003 .

[85]  Chao Yang,et al.  Experimental determination and numerical simulation of mixing time in a gas–liquid stirred tank , 2009 .

[86]  R. Zadghaffari,et al.  A mixing study in a double-Rushton stirred tank , 2009, Comput. Chem. Eng..

[87]  Suzanne M. Kresta,et al.  Importance of using the correct impeller boundary conditions for CFD simulations of stirred tanks , 1994 .

[88]  Catherine Xuereb,et al.  Design of multiple impeller stirred tanks for the mixing of highly viscous fluids using CFD , 2006 .

[89]  Zhengming Gao,et al.  Large Eddy Simulations of Mixing Time in a Stirred Tank , 2006 .

[90]  Jyeshtharaj B. Joshi,et al.  Assessment of standard k–ε, RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs , 2008 .

[91]  Suzanne M. Kresta,et al.  Low frequency macroinstabilities in a stirred tank: scale-up and prediction based on large eddy simulations , 2003 .

[92]  Jyeshtharaj B. Joshi,et al.  Simulation of Flow in Stirred Vessels with Axial Flow Impellers: Effects of Various Numerical Schemes and Turbulence Model Parameters , 1995 .

[93]  Joël Bertrand Developing Chemical Engineering in the World , 2001 .

[94]  Alessandro Paglianti,et al.  Gas–liquid flow and bubble size distribution in stirred tanks , 2008 .

[95]  Jyeshtharaj B. Joshi,et al.  Critical impeller speed for solid suspension in gas inducing type mechanically agitated contactors , 1997 .

[96]  G. Evans,et al.  Numerical modelling of gas-liquid flow in stirred tanks , 2005 .

[97]  Jyeshtharaj B. Joshi,et al.  Surface aerators: power number, mass transfer coefficient, gas hold up profiles and flow patterns , 2006 .

[98]  Jyeshtharaj B. Joshi,et al.  Design of Gas-Inducing Reactors , 1999 .

[99]  Marjatta Louhi-Kultanen,et al.  Application of CFD simulation to suspension crystallization—factors affecting size-dependent classification , 2001 .

[100]  Michael Schäfer,et al.  Detailed LDV Measurements for Visualization of the Flow Field Within a Stirred-Tank Reactor Equipped with a Rushton Turbine , 1997 .

[101]  Vivek V. Ranade,et al.  FLOW GENERATED BY PITCHED BLADE TURBINES II: SIMULATION USING κ-ε MODEL , 1989 .

[102]  Ivan Fort,et al.  Velocity profiles in a closed, unbaffled vessel: comparison between experimental LDV data and numerical CFD predictions , 1997 .

[103]  Yong Jin,et al.  A CFD–PBM coupled model for gas–liquid flows , 2006 .

[104]  A. Bannari,et al.  CFD MODELING OF GAS DISPERSION AND BUBBLE SIZE IN A DOUBLE TURBINE STIRRED TANK , 2006 .

[105]  Ivan Fořt,et al.  Energy dissipation rate in a baffled vessel with pitched blade turbine impeller , 1991 .

[106]  Alberto Brucato,et al.  Modelling and Simulation of Gas–Liquid Hydrodynamics in Mechanically Stirred Tanks , 2007 .

[107]  Jos Derksen Assessment of Large Eddy Simulations for Agitated Flows , 2001 .

[108]  Jyeshtharaj B. Joshi,et al.  Effect of impeller design on the flow pattern and mixing in stirred tanks , 2006 .

[109]  V. Roussinova,et al.  Low frequency macroinstabilities in a stirred tank , 2001 .

[110]  Bjørn H. Hjertager,et al.  LDA measurements and CFD modelling of gas-liquid flow in a stirred vessel , 1996 .

[111]  G. Zhou,et al.  Distribution of Energy Between Convective and Turbulent-Flow for 3 Frequently Used Impellers , 1996 .

[112]  Somnath C. Roy,et al.  Flow structure and the effect of macro-instabilities in a pitched-blade stirred tank , 2010 .

[113]  Jyeshtharaj B. Joshi,et al.  Design of stirred vessels with gas entrained from free liquid surface , 1998 .

[114]  Richard D. LaRoche,et al.  Sliding Mesh Simulation of Laminar Flow in Stirred Reactors , 1997 .

[115]  D. G. Lilley,et al.  LIMITATIONS AND EMPIRICAL EXTENSIONS OF THE k-ε MODEL AS APPLIED TO TURBULENT CONFINED SWIRLING FLOWS , 1984 .

[116]  A. W. Nienow,et al.  Suspension of solid particles in turbine agitated baffled vessels , 1968 .

[117]  Zai-Sha Mao,et al.  Experimental and numerical study of gas hold-up in surface aerated stirred tanks , 2006 .

[118]  Michael Yianneskis,et al.  Hydrodynamic characteristics of dual Rushton impeller stirred vessels , 1996 .

[119]  P. Mavros,et al.  Quantification of the Performance of Agitators In Stirred Vessels: Definition and Use of an Agitation Index , 1997 .

[120]  Jyeshtharaj B. Joshi,et al.  EFFECT OF IMPELLER DESIGN ON LIQUID PHASE MIXING IN MECHANICALLY AGITATED REACTORS , 1991 .

[121]  Zai-Sha Mao,et al.  Numerical and Experimental Investigation of Liquid-Liquid Two-Phase Flow in Stirred Tanks , 2005 .

[122]  Vivek V. Ranade,et al.  FLOW GENERATED BY PITCHED BLADE TURBINES I: MEASUREMENTS USING LASER DOPPLER ANEMOMETER , 1989 .

[123]  António Joaquim Serralheiro,et al.  Bubble size in aerated stirred tanks , 2002 .

[124]  D. Pinelli,et al.  Diagnosis of Solid Distribution in Vessels Stirred with Multiple PBTs and Comparison of Two Modelling Approaches , 2008 .

[125]  Jyeshtharaj B. Joshi,et al.  Power consumption in gas-inducing-type mechanically agitated contactors , 1996 .

[126]  Alberto Brucato,et al.  Prediction of flow fields in a dual-impeller stirred vessel , 1999 .

[127]  A. Brucato,et al.  Particle drag coefficients in turbulent fluids , 1998 .

[128]  J. Derksen Numerical Simulation of Solids Suspension in a Stirred Tank , 2003 .

[129]  Matthias Reuss,et al.  A critical assessment on the use of k–ε turbulence models for simulation of the turbulent liquid flow induced by a Rushton-turbine in baffled stirred-tank reactors , 1999 .

[130]  Piero M. Armenante,et al.  Velocity profiles in a baffled vessel with single or double pitched-blade turbines , 1996 .

[131]  Jyeshtharaj B. Joshi,et al.  Flow generated by a disc turbine. IV: Multiple impellers , 1994 .

[132]  Vivek V. Ranade,et al.  CFD simulation of gas–liquid stirred vessel: VC, S33, and L33 flow regimes , 2006 .

[133]  Ville Alopaeus,et al.  Modelling mass transfer in an aerated 0.2 m3 vessel agitated by Rushton, Phasejet and Combijet impellers , 2008 .

[134]  G. L. Lane,et al.  Modelling of the Interaction between Gas and Liquid in Stirred Vessels , 2000 .

[135]  A. Soldati,et al.  Direct numerical simulation of turbulent particle dispersion in an unbaffled stirred-tank reactor , 2006 .

[136]  R. Neugebauer,et al.  Studies on mixing. XXIX. Spacial distribution of mechanical energy dissipated by axial mixer in a system with radial baffles , 1971 .

[137]  Vivek V. Ranade,et al.  A COMPUTATIONAL SNAPSHOT OF GAS-LIQUID FLOW IN BAFFLED STIRRED REACTORS , 1994 .

[138]  Jyeshtharaj B. Joshi,et al.  Mechanism of Gas Induction in a Self-Inducting Impeller , 2005 .

[139]  Tron Solberg,et al.  Flow Generated by an Aerated Rushton Impeller: Two‐phase PIV Experiments and Numerical Simulations , 2008 .

[140]  Philippe A. Tanguy,et al.  CFD simulation of gas–liquid flows in stirred vessel equipped with dual rushton turbines: influence of parallel, merging and diverging flow configurations , 2008 .

[141]  Pierre Proulx,et al.  Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model , 2008, Comput. Chem. Eng..

[142]  Stuart E. Rogers,et al.  Steady-state modeling and experimental measurement of a baffled impeller stirred tank , 1995 .

[143]  Gerhart Eigenberger,et al.  Dynamic Numerical Simulation of Gas-Liquid Two Phase Flows, Euler-Euler versus Euler-Lagrange , 1997 .

[144]  Alberto Brucato,et al.  Numerical prediction of flow fields in baffled stirred vessels: A comparison of alternative modelling approaches , 1998 .

[145]  G. K. Patterson,et al.  Measurements and Modelling of Flow in Gas Sparged, Agitated Vessels , 1992 .

[146]  Jyeshtharaj B. Joshi,et al.  Simulation of flow in stirred vessel with axial flow impeller: zonal modeling and optimization of parameters , 1998 .

[147]  A. Bakker,et al.  A COMPUTATIONAL MODEL FOR THE GAS-LIQUID FLOW IN STIRRED REACTORS , 1994 .

[148]  Jyeshtharaj B. Joshi,et al.  Axial mixing in pipe flows: turbulent and transition regions , 2003 .

[149]  Guangyu Yang,et al.  The CFD simulation of temperature control in a batch mixing tank , 2003 .

[150]  Geoffrey M. Evans,et al.  Predicting gas–liquid flow in a mechanically stirred tank , 2002 .

[151]  De-Pan Shi,et al.  Three-dimensional CFD model of the temperature field for a pilot-plant tubular loop polymerization reactor , 2010 .

[152]  Vivek V. Ranade,et al.  Comparison of axial flow impellers using a laser doppler anemometer , 1992 .

[153]  Elizabeth M. Marshall,et al.  The Use of Large Eddy Simulation to Study Stirred Vessel Hydrodynamics , 2000 .

[154]  Aoyi Ochieng,et al.  Drag models, solids concentration and velocity distribution in a stirred tank , 2008 .

[155]  M. Jahoda,et al.  CFD modelling of liquid homogenization in stirred tanks with one and two impellers using large eddy simulation , 2007 .

[156]  Chao Yang,et al.  Numerical Simulation of Liquid-Solid Flow in an Unbaffled Stirred Tank with a Pitched-Blade Turbine Downflow , 2008 .

[157]  N. Zuber,et al.  Drag coefficient and relative velocity in bubbly, droplet or particulate flows , 1979 .

[158]  G. Montante *,et al.  Modelling of solids distribution in stirred tanks: analysis of simulation strategies and comparison with experimental data , 2005 .

[159]  Suzanne M. Kresta,et al.  The flow field produced by a pitched blade turbine : characterization of the turbulence and estimation of the dissipation rate , 1993 .

[160]  R. Clift,et al.  Motion of entrained particles in gas streams , 1971 .