The mRNA Expression Profiles of Five Heat Shock Protein Genes from Frankliniella occidentalis at Different Stages and Their Responses to Temperatures and Insecticides

[1]  S. Reitz,et al.  Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. , 2012, Pest management science.

[2]  Q. Feng,et al.  Cloning and expression analysis of six small heat shock protein genes in the common cutworm, Spodoptera litura. , 2011, Journal of insect physiology.

[3]  Yong-Hua Liu,et al.  Molecular characterization of three heat shock protein 70 genes and their expression profiles under thermal stress in the citrus red mite , 2011, Molecular Biology Reports.

[4]  Xue Li,et al.  Rapid Cold Hardening and Expression of Heat Shock Protein Genes in the B-Biotype Bemisia tabaci , 2011, Environmental entomology.

[5]  Xingming Liang,et al.  The diurnal flight activity and influential factors of Frankliniella occidentalis in the greenhouse , 2010 .

[6]  A. Hoffmann,et al.  Effects of small Hsp genes on developmental stability and microenvironmental canalization , 2010, BMC Evolutionary Biology.

[7]  A. Whitfield,et al.  Analysis of expressed sequence tags for Frankliniella occidentalis, the western flower thrips , 2010, Insect molecular biology.

[8]  T. K. Barik,et al.  Development of larval thermotolerance and its impact on adult susceptibility to malathion insecticide and Plasmodium vivax infection in Anopheles stephensi , 2010, Parasitology Research.

[9]  Lin He,et al.  Molecular Characterization and Expression of a Heat Shock Protein Gene (HSP90) from the Carmine Spider Mite, Tetranychus cinnabarinus (Boisduval) , 2010, Journal of insect science.

[10]  P. Xu,et al.  Molecular cloning and characterization of four heat shock protein genes from Macrocentrus cingulum (Hymenoptera: Braconidae) , 2010, Molecular Biology Reports.

[11]  G. Herron,et al.  Evaluation of existing and new insecticides including spirotetramat and pyridalyl to control Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on peppers in Queensland. , 2010 .

[12]  Jean-Christophe Gelly,et al.  Detection and Architecture of Small Heat Shock Protein Monomers , 2010, PloS one.

[13]  A. Hoffmann,et al.  Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster , 2010, The FEBS journal.

[14]  D. Kontogiannatos,et al.  Expression of the Hsp83 gene in response to diapause and thermal stress in the moth Sesamia nonagrioides , 2009, Insect molecular biology.

[15]  E. Vierling,et al.  Substrate binding site flexibility of the small heat shock protein molecular chaperones , 2009, Proceedings of the National Academy of Sciences.

[16]  Sufen Tian,et al.  Interaction between Short-Term Heat Pretreatment and Avermectin on 2nd Instar Larvae of Diamondback Moth, Plutella Xylostella (LINN) , 2009, Dose-response : a publication of International Hormesis Society.

[17]  E. Soumaka,et al.  Thermotolerance and HSP70 expression in the Mediterranean fruit fly Ceratitis capitata. , 2009, Journal of insect physiology.

[18]  S. Reitz Biology and Ecology of the Western Flower Thrips (Thysanoptera: Thripidae): The Making of a Pest , 2009 .

[19]  Li-Hua Huang,et al.  Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa. , 2009, Journal of insect physiology.

[20]  S. Karlin,et al.  Conservation among HSP60 sequences in relation to structure, function, and evolution , 2008, Protein science : a publication of the Protein Society.

[21]  P. Bielza Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis. , 2008, Pest management science.

[22]  Lin He,et al.  [Relative fitness of Tetranychus cinnabarinus resistant strains at different temperatures]. , 2008, Ying yong sheng tai xue bao = The journal of applied ecology.

[23]  P. Tiwari,et al.  In Vitro Induction of 60-kDa and 70-kDa Heat Shock Proteins by Endosulphan and Monocrotophos in Sheep Blowfly Lucilia cuprina , 2008, Archives of environmental contamination and toxicology.

[24]  M. Clark,et al.  How insects survive the cold: molecular mechanisms—a review , 2008, Journal of Comparative Physiology B.

[25]  B. Bettencourt,et al.  Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies , 2008, BMC Biology.

[26]  Subash C. Gupta,et al.  Induction of hsp70, alterations in oxidative stress markers and apoptosis against dichlorvos exposure in transgenic Drosophila melanogaster: modulation by reactive oxygen species. , 2007, Biochimica et biophysica acta.

[27]  Subash C. Gupta,et al.  Adverse effect of organophosphate compounds, dichlorvos and chlorpyrifos in the reproductive tissues of transgenic Drosophila melanogaster: 70kDa heat shock protein as a marker of cellular damage. , 2007, Toxicology.

[28]  S. P. Roberts,et al.  Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster , 2007, Insect molecular biology.

[29]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[30]  Li-Hua Huang,et al.  Cloning and interspecific altered expression of heat shock protein genes in two leafminer species in response to thermal stress , 2007, Insect molecular biology.

[31]  V. Loeschcke,et al.  Studying stress responses in the post-genomic era: its ecological and evolutionary role , 2007, Journal of Biosciences.

[32]  S. Broughton,et al.  Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) chemical control: insecticide efficacy associated with the three consecutive spray strategy , 2007 .

[33]  M. Theodoraki,et al.  cDNA cloning, heat shock regulation and developmental expression of the hsp83 gene in the Mediterranean fruit fly Ceratitis capitata , 2006, Insect molecular biology.

[34]  P. Tiwari,et al.  Expression of HSP60 homologue in sheep blowfly Lucilia cuprina during development and heat stress , 2006 .

[35]  S. Miao,et al.  The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones , 2006, Cellular and Molecular Life Sciences CMLS.

[36]  Sheng Zhao,et al.  Comprehensive Algorithm for Quantitative Real-Time Polymerase Chain Reaction , 2005, J. Comput. Biol..

[37]  P. Bielza,et al.  Metabolic mechanisms of insecticide resistance in the western flower thrips, Frankliniella occidentalis (Pergande). , 2005, Pest management science.

[38]  M. Yamaguchi,et al.  Alternative splicing regulates the transcriptional activity of Drosophila heat shock transcription factor in response to heat/cold stress , 2005, FEBS letters.

[39]  L. Neven,et al.  Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). , 2005, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[40]  E. Vierling,et al.  Mutants in a Small Heat Shock Protein That Affect the Oligomeric State , 2004, Journal of Biological Chemistry.

[41]  Melani-Ivy Samson,et al.  Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[42]  L. Terry,et al.  The spread of the western flower thrips Frankliniella occidentalis (Pergande) , 2003 .

[43]  Jesper Givskov Sørensen,et al.  The evolutionary and ecological role of heat shock proteins , 2003 .

[44]  T. Cavalier-smith,et al.  Phylogenetic Analysis of Eukaryotes Using Heat-Shock Protein Hsp90 , 2003, Journal of Molecular Evolution.

[45]  F. Speleman,et al.  Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.

[46]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[47]  Michael Chinkers,et al.  Overlapping Sites of Tetratricopeptide Repeat Protein Binding and Chaperone Activity in Heat Shock Protein 90* , 2000, The Journal of Biological Chemistry.

[48]  Luis Moroder,et al.  Structure of TPR Domain–Peptide Complexes Critical Elements in the Assembly of the Hsp70–Hsp90 Multichaperone Machine , 2000, Cell.

[49]  J. Buchner,et al.  Hsp90 & Co. - a holding for folding. , 1999, Trends in biochemical sciences.

[50]  S. Lindquist,et al.  Genetic analysis of viable Hsp90 alleles reveals a critical role in Drosophila spermatogenesis. , 1999, Genetics.

[51]  D. Joanisse,et al.  Small heat shock proteins ofDrosophila: Developmental expression and functions , 1998, Journal of Biosciences.

[52]  S. Kontsedalov,et al.  Effects of Insecticides on Immature and Adult Western Flower Thrips (Thysanoptera: Thripidae) in Israel , 1998 .

[53]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[54]  J. Bale,et al.  Low temperature mortality and overwintering of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) , 1997 .

[55]  J. Bale,et al.  Effects of sub-lethal cold stress on the Western Flower Thrips, Frankliniella occidentalis , 1997 .

[56]  J. Bale,et al.  Rapid cold hardening in the western flower thrips Frankliniella occidentalis. , 1997, Journal of insect physiology.

[57]  E. Hafen,et al.  The heat shock protein 83 (Hsp83) is required for Raf‐mediated signalling in Drosophila , 1997, The EMBO journal.

[58]  B. Bradley,et al.  Resistance to malathion in heat‐shocked Daphnia magna , 1997 .

[59]  Y Q Qian,et al.  Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J-domain. , 1996, Journal of molecular biology.

[60]  G. Herron,et al.  Laboratory‐Based, Insecticide Efficacy Studies on Field‐Collected Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and Implications for its Management in Australia , 1996 .

[61]  A. Knowlton,et al.  Nuclear localization and the heat shock proteins , 1996, Journal of Biosciences.

[62]  R. Gupta,et al.  Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. , 1995, Molecular biology and evolution.

[63]  W. Gehring,et al.  Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[64]  H. Brødsgaard Cold Hardiness and Tolerance to Submergence in Water in Frankliniella occidentalis (Thysanoptera: Thripidae) , 1993 .

[65]  F. Hartl,et al.  Prevention of protein denaturation under heat stress by the chaperonin Hsp60. , 1992, Science.

[66]  T. Paine,et al.  Western Flower Thrips (Thysanoptera: Thripidae) Resistance to Insecticides in Coastal California Greenhouses , 1992 .

[67]  J. Sambrook,et al.  Protein folding in the cell , 1992, Nature.

[68]  R. Dallai,et al.  Ultrastructure of the midgut and the adhering tubular salivary glands of Frankliniella occidentalis (Pergande) (Thysanoptera : Thripidae) , 1991 .

[69]  P. R. Sibbald,et al.  The P-loop--a common motif in ATP- and GTP-binding proteins. , 1990, Trends in biochemical sciences.

[70]  U. Klein,et al.  Developmental expression of Drosophila melanogaster small heat-shock proteins. , 1990, Journal of cell science.

[71]  F. Hartl,et al.  Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria , 1989, Nature.

[72]  S. Lindquist,et al.  The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels , 1982, Cell.

[73]  B. Heming Metamorphosis of the pretarsus in Frankliniella fusca (Hinds) (Thripidae) and Haplothrips verbasci (Osborn) (Phlaeothripidae) (Thysanoptera) , 1973 .

[74]  T. Sappington,et al.  Cloning of the heat shock protein 90 and 70 genes from the beet armyworm, Spodoptera exigua, and expression characteristics in relation to thermal stress and development , 2011, Cell Stress and Chaperones.

[75]  L. Hong Impact of temperature hardening on thermal tolerance and reproduction in Frankliniella occidentalis , 2011 .

[76]  Jiang Yong-jin Survival rates of Frankliniella occidentalis and Frankliniella intonsa after exposure to adverse temperature conditions , 2010 .

[77]  F. Hong Heat shock response and HSPs of Tetranychus cinnabarinus (Acari:Tetranychidae) resistant to avermectin , 2008 .

[78]  Ma Chun Effects of heat stress on physiological and biochemical mechanisms of insects: a literature review , 2007 .

[79]  M. Hoddle,et al.  Invasion biology of thrips. , 2006, Annual review of entomology.

[80]  Soojin Lee,et al.  Mechanisms for regulation of Hsp70 function by Hsp40 , 2003, Cell stress & chaperones.

[81]  K. Kregel Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. , 2002, Journal of applied physiology.

[82]  J. Sherwood,et al.  Thrips as vectors of tospoviruses , 2002 .

[83]  M. Feder,et al.  Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. , 1999, Annual review of physiology.

[84]  W. Hunter,et al.  Internal anatomy and morphology of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) with special reference to interactions between thrips and tomato spotted wilt virus , 1989 .