CHARMM‐GUI: A web‐based graphical user interface for CHARMM

CHARMM is an academic research program used widely for macromolecular mechanics and dynamics with versatile analysis and manipulation tools of atomic coordinates and dynamics trajectories. CHARMM‐GUI, http://www.charmm‐gui.org, has been developed to provide a web‐based graphical user interface to generate various input files and molecular systems to facilitate and standardize the usage of common and advanced simulation techniques in CHARMM. The web environment provides an ideal platform to build and validate a molecular model system in an interactive fashion such that, if a problem is found through visual inspection, one can go back to the previous setup and regenerate the whole system again. In this article, we describe the currently available functional modules of CHARMM‐GUI Input Generator that form a basis for the advanced simulation techniques. Future directions of the CHARMM‐GUI development project are also discussed briefly together with other features in the CHARMM‐GUI website, such as Archive and Movie Gallery. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2008

[1]  J. Mccammon,et al.  Molecular dynamics with stochastic boundary conditions , 1982 .

[2]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[3]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[4]  M. Karplus,et al.  Stochastic boundary conditions for molecular dynamics simulations of ST2 water , 1984 .

[5]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[6]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[7]  K. Sharp,et al.  Calculating the electrostatic potential of molecules in solution: Method and error assessment , 1988 .

[8]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[9]  B. Roux,et al.  Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Skehel,et al.  Structure of influenza haemagglutinin at the pH of membrane fusion , 1994, Nature.

[11]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[12]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[13]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[14]  B. Roux,et al.  Structure, energetics, and dynamics of lipid–protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer , 1996, Proteins.

[15]  M. Karplus,et al.  A Comprehensive Analytical Treatment of Continuum Electrostatics , 1996 .

[16]  L. Shen,et al.  Transmembrane helix structure, dynamics, and interactions: multi-nanosecond molecular dynamics simulations. , 1997, Biophysical journal.

[17]  J. Kelly,et al.  Amyloid fibril formation and protein misassembly: a structural quest for insights into amyloid and prion diseases. , 1997, Structure.

[18]  D. Beglov,et al.  Atomic Radii for Continuum Electrostatics Calculations Based on Molecular Dynamics Free Energy Simulations , 1997 .

[19]  B. Roux Influence of the membrane potential on the free energy of an intrinsic protein. , 1997, Biophysical journal.

[20]  W. Im,et al.  Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation , 1998 .

[21]  H. Berendsen,et al.  A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. , 1998, Biophysical journal.

[22]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[23]  J. Mccammon,et al.  Ewald artifacts in computer simulations of ionic solvation and ion–ion interaction: A continuum electrostatics study , 1999 .

[24]  M. Karplus,et al.  Effective energy function for proteins in solution , 1999, Proteins.

[25]  B. Roux,et al.  Implicit solvent models. , 1999, Biophysical chemistry.

[26]  Alexander D. MacKerell,et al.  An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids , 2000 .

[27]  P E Bourne,et al.  The Protein Data Bank. , 2002, Nucleic acids research.

[28]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution , 2000 .

[29]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[30]  S. Hassan,et al.  A General Treatment of Solvent Effects Based on Screened Coulomb Potentials , 2000 .

[31]  A. Clippingdale,et al.  The amyloid‐β peptide and its role in Alzheimer's disease , 2001 .

[32]  W. Im,et al.  Generalized solvent boundary potential for computer simulations , 2001 .

[33]  Alexander D. MacKerell,et al.  Computational Biochemistry and Biophysics , 2001 .

[34]  Graham R. Smith,et al.  Setting up and optimization of membrane protein simulations , 2002, European Biophysics Journal.

[35]  C. Brooks,et al.  Novel generalized Born methods , 2002 .

[36]  W. Im,et al.  Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. , 2002, Journal of molecular biology.

[37]  J. Apostolakis,et al.  Evaluation of a fast implicit solvent model for molecular dynamics simulations , 2002, Proteins.

[38]  B. Roux,et al.  Atomic Radii for Continuum Electrostatics Calculations on Nucleic Acids , 2002 .

[39]  T. Lazaridis Effective energy function for proteins in lipid membranes , 2003, Proteins.

[40]  C. Brooks,et al.  An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. , 2003, Biophysical journal.

[41]  Charles L. Brooks,et al.  Generalized born model with a simple smoothing function , 2003, J. Comput. Chem..

[42]  Alexander D. MacKerell,et al.  Improved treatment of the protein backbone in empirical force fields. , 2004, Journal of the American Chemical Society.

[43]  C. Brooks,et al.  Constant‐pH molecular dynamics using continuous titration coordinates , 2004, Proteins.

[44]  D. Case,et al.  Constant pH molecular dynamics in generalized Born implicit solvent , 2004, J. Comput. Chem..

[45]  C. Brooks,et al.  Recent advances in the development and application of implicit solvent models in biomolecule simulations. , 2004, Current opinion in structural biology.

[46]  J. Antosiewicz,et al.  Constant-pH molecular dynamics simulations: a test case of succinic acid , 2004 .

[47]  K. Schulten,et al.  Computational studies of membrane channels. , 2004, Structure.

[48]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[49]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[50]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[51]  Alexander D. MacKerell,et al.  An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. , 2005, The journal of physical chemistry. B.

[52]  Julian Tirado-Rives,et al.  Molecular modeling of organic and biomolecular systems using BOSS and MCPRO , 2005, J. Comput. Chem..

[53]  M. Karplus,et al.  Guide to Biomolecular Simulations , 2005 .

[54]  Markus Christen,et al.  The GROMOS software for biomolecular simulation: GROMOS05 , 2005, J. Comput. Chem..

[55]  Richard A. Friesner,et al.  Integrated Modeling Program, Applied Chemical Theory (IMPACT) , 2005, J. Comput. Chem..

[56]  C. Brooks,et al.  Peptide and protein folding and conformational equilibria: theoretical treatment of electrostatics and hydrogen bonding with implicit solvent models. , 2005, Advances in protein chemistry.

[57]  M. Feig,et al.  A generalized Born formalism for heterogeneous dielectric environments: application to the implicit modeling of biological membranes. , 2005, The Journal of chemical physics.

[58]  C. Brooks,et al.  Constant pH molecular dynamics with proton tautomerism. , 2005, Biophysical journal.

[59]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[60]  M. Karplus,et al.  Advances in chemical physics, volume 71: Proteins: A theoretical perspective of dynamics, structure, and thermodynamics , 2006 .

[61]  W. Im,et al.  Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations , 2007, PloS one.

[62]  I. Zilberberg,et al.  Paired Orbitals for Different Spins equations , 2008 .