Modular Process Engineering: Development of Apparatuses for Transformable Production Systems

The process industry faces the challenges of intensified, global competition with increasing market dynamics. Modular, transformable production concepts promise a better adaption to these in the dimensions of throughput, product mix, and production location. In order to unfold the full potential, modularization and transformability have to be carried out not only on the plant and logistics level, but also on the apparatus level. Characteristics like setup and scaling concepts are discussed. Examples for modular apparatuses concerning the process engineering tasks of mixing, heat exchange, reaction and separation are presented and further research needs are derived.

[1]  Volker Hessel,et al.  Potenzialanalyse von Milli- und Mikroprozesstechniken für die Verkürzung von Prozessentwicklungszeiten : Chemie und Prozessdesign als Intensivierungsfelder , 2012 .

[2]  Asterios Gavriilidis,et al.  Flow Distribution in Different Microreactors Scale-Out Geometries and the Effect on Manufacturing Tolerances and Channel Blocking , 2004 .

[3]  Marcus Grünewald,et al.  Modularisierung von Mikrotrennapparaten als Scale-up-Methode am Beispiel der Mikrodestillation , 2011 .

[4]  Eugeny Y. Kenig,et al.  Micro-separation of fluid systems: A state-of-the-art review , 2013 .

[5]  U. Schygulla,et al.  Mikrostrukturmischer für Gasphasenprozesse – Herstellung, Charakterisierung und Anwendungsmöglichkeiten , 2004 .

[6]  Klaus Schubert,et al.  MlCROSTRUCTURE DEVICES FOR APPLICATIONS IN THERMAL AND CHEMICAL PROCESS ENGINEERING , 2023, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[7]  Jochen Strube,et al.  Development of Micro Separation Technology Modules. Part 1: Liquid‐Liquid Extraction , 2015 .

[8]  Yundong Wang,et al.  A State-of-the-Art Review of Mixing in Microfluidic Mixers , 2008 .

[9]  Marcus Grünewald,et al.  Ein skalierbares, modulares Reaktorkonzept zur Prozessintensivierung , 2013 .

[10]  Dominique M. Roberge,et al.  Microreactor Technology: A Revolution for the Fine Chemical and Pharmaceutical Industries? , 2005 .

[11]  Gerhard Ruffert,et al.  Ein flexibles, mikrostrukturiertes Modul für die Desorption: Der High Efficiency Contactor , 2011 .

[12]  Gerhard Schembecker,et al.  Small scale, modular and continuous: A new approach in plant design , 2012 .

[13]  Harald Anlauf,et al.  Mechanische Flüssigkeitsabtrennung in der Lebensmittelverfahrenstechnik , 2008 .

[14]  Robert Ashe,et al.  Continuous Flow Processing of Slurries: Evaluation of an Agitated Cell Reactor , 2011 .

[15]  Gunther Kolb,et al.  Automated and Continuous Production of Microstructured Metallic Plates via Cold Embossing , 2015 .

[16]  Marcus Grünewald,et al.  Development and characterization of a modular absorption column for transformable plants , 2015 .

[17]  Marcus Grünewald,et al.  Untersuchungen eines modularen Absorptionsapparates , 2013 .

[18]  Shinji Kato,et al.  Vacuum membrane distillation by microchip with temperature gradient. , 2010, Lab on a chip.

[19]  L. Luo,et al.  Flow distribution and mass transfer in a parallel microchannel contactor integrated with constructal distributors , 2009 .

[20]  B. Glöckler Dipl.-Ing. Achema 2009 – Wärmeübertrager , 2009 .

[21]  Jochen Strube,et al.  Auslegung, Betrieb und ökonomische Betrachtung chromatographischer Trennprozesse , 1998 .

[22]  Enrico Drioli,et al.  Membrane Gas Separation: A Review/State of the Art , 2009 .

[23]  Nilay Shah,et al.  Process industry supply chains: Advances and challenges , 2005, Comput. Chem. Eng..

[24]  Michael Price,et al.  How the filter press is meeting today's demands , 2001 .

[25]  Sigurd Buchholz,et al.  Future manufacturing approaches in the chemical and pharmaceutical industry , 2010 .

[26]  Ventsislav Zimparov,et al.  Energy conservation through heat transfer enhancement techniques , 2002 .

[27]  Dr.-Ing. Detlev U. Ringer MEHRSTROM-WARMEAUSTAUSCHER ALS GELOTETE ALUMINIUM-PLATTENAPPARATE - STAND DES WISSENS , 1991 .

[28]  Marcus Grünewald,et al.  Realoptionen zur Wirtschaftlichkeitsbewertung von Innovationsprojekten in der Chemieproduktion , 2012 .

[29]  Christian Bramsiepe,et al.  Selection of Technical Reactor Equipment for Modular, Continuous Small-Scale Plants , 2014 .

[30]  Marcus Grünewald,et al.  Mikrotrenntechnik: Entwicklungsstand und Perspektiven , 2008 .

[31]  Ville Alopaeus,et al.  Novel micro-distillation column for process development , 2009 .

[32]  Ekaterina V. Astrova,et al.  Optimization of a Scalable Photochemical Reactor for Reactions with Singlet Oxygen , 2014 .

[33]  Volker Hessel,et al.  Entwicklung einer leistungsstarken Mikrorektifikationsapparatur für analytische und präparative Anwendungen , 2011 .

[34]  Norbert Kockmann,et al.  Scale-up-fähiges Equipment für die Prozessentwicklung , 2012 .

[35]  Jochen Strube,et al.  Development of Micro Separation Technology Modules. Part 2: Distillation , 2015 .

[36]  Sun-Tak Hwang,et al.  Zero‐gravity distillation utilizing the heat pipe principle (micro‐distillation) , 1985 .

[37]  Alexander Felix,et al.  ACHEMA 2012: Membranen und Membranverfahren , 2012 .

[38]  Geoffrey F. Hewitt The Potential for Development in Heat Exchanger Plants , 1981 .

[39]  U Krtschil,et al.  Modular Microstructured Reactors for Pilot‐ and Production Scale Chemistry , 2015 .

[40]  Norbert Kockmann,et al.  Process intensification in small scale extraction columns for counter-current operations , 2014 .

[41]  D. Bathen Adsorption auf der ACHEMA 2012 , 2012 .

[42]  David W. Agar,et al.  Scale‐up of Capillary Extraction Equipment , 2011 .

[43]  Norbert Kockmann,et al.  Silicon microstructures for high throughput mixing devices , 2006 .

[44]  Tim Aubel,et al.  ACHEMA 2009: Membranen und Membranverfahren , 2009 .

[45]  Michael Kleiber Prozesstechnik auf der ACHEMA 2012 , 2012 .

[46]  Volker Hessel,et al.  Mikroreaktionstechnik auf der Achema 2009 , 2009 .

[47]  Kai Sundmacher,et al.  Experimental investigation on a membrane distillation based micro-separator , 2010 .

[48]  Toma Glasnov,et al.  A three step continuous flow synthesis of the biaryl unit of the HIV protease inhibitor Atazanavir. , 2013, Organic & biomolecular chemistry.

[49]  V. Hessel,et al.  Micromixers—a review on passive and active mixing principles , 2005 .

[50]  Marcus Grünewald,et al.  Net Present Value Analysis of Modular Chemical Production Plants , 2011 .

[51]  Holger Löwe,et al.  Mikroverfahrenstechnik: Komponenten – Anlagenkonzeption – Anwenderakzeptanz – Teil 1 , 2002 .

[52]  B. Glöckler Achema 2009 – Wärmeübertrager , 2009 .

[53]  Gerhard Schembecker,et al.  Intensified hydroformylation as an example for flexible intermediates production , 2014 .

[54]  Ravi Arora,et al.  Methanol production FPSO plant concept using multiple microchannel unit operations , 2008 .

[55]  Arno Behr,et al.  Neue Entwicklungen bei Anlagen und Verfahren für die Produktion von Pharmawirkstoffen , 2003 .

[56]  Hans-Peter Wiendahl,et al.  Planung modularer Fabriken: Vorgehen und Beispiele aus der Praxis , 2005 .

[57]  Daniel S. Christen Praxiswissen der chemischen Verfahrenstechnik , 2010 .