Provable deterministic leverage score sampling

We explain theoretically a curious empirical phenomenon: "Approximating a matrix by deterministically selecting a subset of its columns with the corresponding largest leverage scores results in a good low-rank matrix surrogate". In this work, we provide a novel theoretical analysis of deterministic leverage score sampling. We show that such sampling can be provably as accurate as its randomized counterparts, if the leverage scores follow a moderately steep power-law decay. We support this power-law assumption by providing empirical evidence that such decay laws are abundant in real-world data sets. We then demonstrate empirically the performance of deterministic leverage score sampling, which many times matches or outperforms the state-of-the-art techniques.

[1]  Ilse C. F. Ipsen,et al.  The Effect of Coherence on Sampling from Matrices with Orthonormal Columns, and Preconditioned Least Squares Problems , 2014, SIAM J. Matrix Anal. Appl..

[2]  Philip S. Yu,et al.  Colibri: fast mining of large static and dynamic graphs , 2008, KDD.

[3]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[4]  E. Tyrtyshnikov Mosaic-Skeleton approximations , 1996 .

[5]  Jimeng Sun,et al.  Less is More: Compact Matrix Decomposition for Large Sparse Graphs , 2007, SDM.

[6]  Ilse C. F. Ipsen,et al.  On Rank-Revealing Factorisations , 1994, SIAM J. Matrix Anal. Appl..

[7]  G. W. Stewart,et al.  Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix , 1999, Numerische Mathematik.

[8]  Venkatesan Guruswami,et al.  Optimal column-based low-rank matrix reconstruction , 2011, SODA.

[9]  T. Chan Rank Revealing OR Factorizations * , 2001 .

[10]  Edo Liberty,et al.  Simple and deterministic matrix sketching , 2012, KDD.

[11]  Gene H. Golub,et al.  Numerical methods for solving linear least squares problems , 1965, Milestones in Matrix Computation.

[12]  Martin Brown,et al.  Subset Selection Algorithms: Randomized vs. Deterministic , 2010 .

[13]  Alan M. Frieze,et al.  Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.

[14]  Jeff M. Phillips,et al.  Relative Errors for Deterministic Low-Rank Matrix Approximations , 2013, SODA.

[15]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[16]  Per Christian Hansen,et al.  Low-rank revealing QR factorizations , 1994, Numer. Linear Algebra Appl..

[17]  Luis Rademacher,et al.  Efficient Volume Sampling for Row/Column Subset Selection , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[18]  Mark Rudelson,et al.  Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.

[19]  C. Pan,et al.  Rank-Revealing QR Factorizations and the Singular Value Decomposition , 1992 .

[20]  Christos Boutsidis,et al.  Unsupervised feature selection for principal components analysis , 2008, KDD.

[21]  Christos Boutsidis,et al.  Near Optimal Column-Based Matrix Reconstruction , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[22]  Christos Boutsidis,et al.  Faster Subset Selection for Matrices and Applications , 2011, SIAM J. Matrix Anal. Appl..

[23]  Michael W. Mahoney,et al.  PCA-Correlated SNPs for Structure Identification in Worldwide Human Populations , 2007, PLoS genetics.

[24]  GuMing,et al.  Efficient algorithms for computing a strong rank-revealing QR factorization , 1996 .

[25]  Ian T. Jolliffe,et al.  Discarding Variables in a Principal Component Analysis. I: Artificial Data , 1972 .

[26]  Nikhil Srivastava,et al.  Graph sparsification by effective resistances , 2008, SIAM J. Comput..

[27]  I. Jolliffe Discarding Variables in a Principal Component Analysis. Ii: Real Data , 1973 .

[28]  Christos Boutsidis,et al.  Optimal CUR matrix decompositions , 2014, STOC.

[29]  Christos Boutsidis,et al.  An improved approximation algorithm for the column subset selection problem , 2008, SODA.

[30]  I. Jolliffe Principal Component Analysis , 2002 .

[31]  C. Pan On the existence and computation of rank-revealing LU factorizations , 2000 .

[33]  Petros Drineas,et al.  CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.

[34]  Jérôme Kunegis,et al.  KONECT: the Koblenz network collection , 2013, WWW.

[35]  Christian H. Bischof,et al.  Computing rank-revealing QR factorizations of dense matrices , 1998, TOMS.

[36]  Michael W. Mahoney,et al.  Revisiting the Nystrom Method for Improved Large-scale Machine Learning , 2013, J. Mach. Learn. Res..

[37]  Anastasios Zouzias,et al.  A Matrix Hyperbolic Cosine Algorithm and Applications , 2011, ICALP.

[38]  S. Muthukrishnan,et al.  Relative-Error CUR Matrix Decompositions , 2007, SIAM J. Matrix Anal. Appl..

[39]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .