A novel improvement of particle swarm optimization using Dual Factors strategy

The particle swarm optimization, inspired by nature, is widely used for optimizing complex problems and achieves many good stories in practical applications. However, the traditional PSO only focuses on the function value during evolutionary process. It ignores the information of distance between particles and potential regions. A Dual Factors Particle Swarm Optimization (DFPSO) incorporating both of distance and function information is proposed in this paper to help PSO in finding potential global optimal regions. The strategy of the DFPSO increases the diversity of population to yield improved results. The experimental results manifest that the performance, including accuracy and speed, are improved.

[1]  Thomas Kiel Rasmussen,et al.  Hybrid Particle Swarm Optimiser with breeding and subpopulations , 2001 .

[2]  P. Taylor,et al.  Neural Network Modeling and Particle Swarm Optimization ( PSO ) of Process Parameters in Pulsed Laser Micromachining of Hardened AISI H 13 Steel , 2009 .

[3]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[4]  Yongji Wang,et al.  Multi-swarm Particle Swarm Optimizer with Cauchy Mutation for Dynamic Optimization Problems , 2009, ISICA.

[5]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[6]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[7]  Shu-Kai S. Fan,et al.  A hybrid simplex search and particle swarm optimization for unconstrained optimization , 2007, Eur. J. Oper. Res..

[8]  Xiaodong Li,et al.  Erratum to "Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology" [Feb 10 150-169] , 2010, IEEE Trans. Evol. Comput..

[9]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[10]  Hitoshi Iba,et al.  Particle swarm optimization with Gaussian mutation , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[11]  Mohammed El-Abd,et al.  A cooperative particle swarm optimizer with migration of heterogeneous probabilistic models , 2010, Swarm Intelligence.

[12]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[13]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, ANTS Conference.

[14]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[15]  Atsushi Ishigame,et al.  Particle swarm optimization based on the concept of tabu search , 2007, 2007 IEEE Congress on Evolutionary Computation.

[16]  Azah Mohamed,et al.  Power system stabilizer design using hybrid multi-objective particle swarm optimization with chaos , 2011 .

[17]  Hao Guo,et al.  Real-Time Estimation of Sensor Node's Position Using Particle Swarm Optimization With Log-Barrier Constraint , 2011, IEEE Transactions on Instrumentation and Measurement.

[18]  Salman Mohagheghi,et al.  Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems , 2008, IEEE Transactions on Evolutionary Computation.

[19]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[20]  S.H. Zainud-Deen,et al.  Breast cancer detection using a hybrid Finite difference frequency domain and particle swarm optimization techniques , 2008, 2008 National Radio Science Conference.

[21]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[22]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[23]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[24]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[25]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[26]  Michael N. Vrahatis,et al.  Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks using the Nash Bargaining Solution , 2005, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[27]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[28]  Jui-Chung Hung,et al.  Adaptive Fuzzy-GARCH model applied to forecasting the volatility of stock markets using particle swarm optimization , 2011, Inf. Sci..

[29]  Hong Tat Ewe,et al.  A SAR Autofocus Algorithm Based on Particle Swarm Optimization , 2008 .

[30]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[31]  Russell C. Eberhart,et al.  Tracking and optimizing dynamic systems with particle swarms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[32]  Liang Gao,et al.  Cellular particle swarm optimization , 2011, Inf. Sci..

[33]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[34]  P. Suganthan Particle swarm optimiser with neighbourhood operator , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[35]  Xiaodong Li,et al.  Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology , 2010, IEEE Transactions on Evolutionary Computation.

[36]  Konstantinos E. Parsopoulos,et al.  UPSO: A Unified Particle Swarm Optimization Scheme , 2019, International Conference of Computational Methods in Sciences and Engineering 2004 (ICCMSE 2004).

[37]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[38]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[39]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[40]  J. Ciurana,et al.  Neural Network Modeling and Particle Swarm Optimization (PSO) of Process Parameters in Pulsed Laser Micromachining of Hardened AISI H13 Steel , 2009 .

[41]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).