Thermophilic biohydrogen production for commercial application: the whole picture

[1]  M. Ghirardi,et al.  Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. , 2002 .

[2]  S. Albracht Nickel hydrogenases: in search of the active site. , 1994, Biochimica et biophysica acta.

[3]  J. Oost,et al.  Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal , 2010, Environmental technology.

[4]  Bruce E. Logan,et al.  Scaling up microbial fuel cells and other bioelectrochemical systems , 2010, Applied Microbiology and Biotechnology.

[5]  I. Sakamoto,et al.  Hydrogen production from diluted and raw sugarcane vinasse under thermophilic anaerobic conditions , 2014 .

[6]  R. Thauer,et al.  Energy Conservation in Chemotrophic Anaerobic Bacteria , 1977, Bacteriological reviews.

[7]  Yu-You Li,et al.  Influence of solids retention time on continuous H2 production using membrane bioreactor , 2010 .

[8]  Xing Yan,et al.  Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. , 2010, Bioresource technology.

[9]  Iulian Zoltan Boboescu,et al.  Revealing the factors influencing a fermentative biohydrogen production process using industrial wastewater as fermentation substrate , 2014, Biotechnology for Biofuels.

[10]  J. Wiegel,et al.  The potential of thermophilic clostridia in biotechnology , 1993 .

[11]  R. Hedderich,et al.  Energy-Converting [NiFe] Hydrogenases: More than Just H2 Activation , 2006, Journal of Molecular Microbiology and Biotechnology.

[12]  R. Philippis,et al.  Hydrogen Production: Photofermentation , 2012 .

[13]  I. Jain,et al.  Hydrogen the fuel for 21st century , 2009 .

[14]  Sudhir Kumar,et al.  Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. , 2013, Bioresource technology.

[15]  E. Stackebrandt,et al.  Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. , 1994, FEMS microbiology letters.

[16]  B. Kroposki,et al.  Renewable hydrogen production , 2008 .

[17]  Poonsuk Prasertsan,et al.  Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge , 2008 .

[18]  A. Stams,et al.  Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. , 2003, Biotechnology and bioengineering.

[19]  Bruce E Logan,et al.  Sustainable and efficient biohydrogen production via electrohydrogenesis , 2007, Proceedings of the National Academy of Sciences.

[20]  Lei Chen,et al.  Engineering biofuel tolerance in non-native producing microorganisms. , 2014, Biotechnology advances.

[21]  M. Adams,et al.  The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically: a New Perspective on Anaerobic Hydrogen Production , 2009, Journal of bacteriology.

[22]  Jean-Philippe Steyer,et al.  Effect of enzyme addition on fermentative hydrogen production from wheat straw , 2012 .

[23]  Nan-Qi Ren,et al.  Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria , 2014, Biotechnology for Biofuels.

[24]  Mi‐Sun Kim,et al.  Continuous hydrogen production from tofu processing waste using anaerobic mixed microflora under thermophilic conditions , 2011 .

[25]  T. Allers,et al.  Archaeal genetics — the third way , 2005, Nature Reviews Genetics.

[26]  Patrick C. Hallenbeck,et al.  Biological hydrogen production; fundamentals and limiting processes , 2002 .

[27]  D. O. Hall,et al.  Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress , 1997 .

[28]  F. Robb,et al.  Enzymes of hydrogen metabolism in Pyrococcus furiosus. , 2000, European journal of biochemistry.

[29]  E. Papoutsakis,et al.  Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress , 2013, Nucleic acids research.

[30]  A. Stams,et al.  Sugar metabolism of hyperthermophiles , 1996 .

[31]  S. Haruta,et al.  Construction of a stable microbial community with high cellulose-degradation ability , 2002, Applied Microbiology and Biotechnology.

[32]  J. Howard,et al.  Iron-sulfur clusters of hydrogenase I and hydrogenase II of Clostridium pasteurianum. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[33]  K. Korkmaz,et al.  Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions , 2009 .

[34]  M. Ballesteros,et al.  Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. , 2010, Bioresource technology.

[35]  Charles M Schroeder,et al.  Thermostable enzymes as biocatalysts in the biofuel industry. , 2010, Advances in applied microbiology.

[36]  Gyoo Yeol Jung,et al.  Current status of the metabolic engineering of microorganisms for biohydrogen production. , 2011, Bioresource technology.

[37]  D. Bagley,et al.  Supersaturation of Dissolved H2 and CO2 During Fermentative Hydrogen Production with N2 Sparging , 2006, Biotechnology Letters.

[38]  Chin-Chao Chen,et al.  Biohydrogen and biomethane from water hyacinth ( Eichhornia crassipes) fermentation: Effects of subs , 2011 .

[39]  Bruce E Logan,et al.  High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. , 2011, Bioresource technology.

[40]  J. Miyake,et al.  Hydrogen production by combining two types of photosynthetic bacteria with different characteristics , 2002 .

[41]  Mi-Sun Kim,et al.  Thermophilic biohydrogen production from glucose with trickling biofilter. , 2004, Biotechnology and bioengineering.

[42]  A. Friedl,et al.  Fermentative Hydrogen Production: Influence of Application of Mesophilic and Thermophilic Bacteria on Mass and Energy Balances , 2011 .

[43]  D. Das,et al.  Improvement of hydrogen production by newly isolated Thermoanaerobacterium thermosaccharolyticum IIT BT-ST1 , 2014 .

[44]  Jo‐Shu Chang,et al.  Enhancing hydrogen production of Clostridium butyricum using a column reactor with square-structured ceramic fittings , 2008 .

[45]  Bruce E. Logan,et al.  Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis , 2009 .

[46]  Debabrata Das,et al.  Improvement of fermentative hydrogen production: various approaches , 2004, Applied Microbiology and Biotechnology.

[47]  Xiaoxu Tian,et al.  Global metabolomic and network analysis of Escherichia coli responses to exogenous biofuels. , 2013, Journal of proteome research.

[48]  R. Lamed,et al.  Effects of Stirring and Hydrogen on Fermentation Products of Clostridium thermocellum , 1988, Applied and environmental microbiology.

[49]  Guido Zacchi,et al.  Techno‐economic evaluation of a two‐step biological process for hydrogen production , 2010, Biotechnology progress.

[50]  A. Melis,et al.  Green alga hydrogen production: progress, challenges and prospects , 2002 .

[51]  E. Bonch‐Osmolovskaya,et al.  Oligonucleotide Probes for the Detection of Representatives of the Genus Thermoanaerobacter , 2003, Microbiology.

[52]  M. Adams,et al.  A simple energy-conserving system: Proton reduction coupled to proton translocation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Chunzhao Liu,et al.  Co-culture of Clostridium thermocellum and Clostridium thermosaccharolyticum for enhancing hydrogen production via thermophilic fermentation of cornstalk waste , 2012 .

[54]  G. Zacchi,et al.  A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus , 2011, Biotechnology for biofuels.

[55]  Juanita Mathews,et al.  Characterization of hydrogen production by engineered Escherichia coli strains using rich defined media , 2010 .

[56]  W. D. de Vos,et al.  The unique features of glycolytic pathways in Archaea. , 2003, The Biochemical journal.

[57]  Michael O. Daramola,et al.  Biohydrogen production as a potential energy fuel in South Africa , 2015 .

[58]  Ta Yeong Wu,et al.  Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: Overview, economics, and future prospects of hydrogen usage , 2013 .

[59]  M. Long,et al.  Characterization and cloning of oxygen-tolerant hydrogenase from Klebsiella oxytoca HP1. , 2011, Research in microbiology.

[60]  R. Hedderich,et al.  A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. , 2004, Microbiology.

[61]  A. Faaij,et al.  Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term , 2005 .

[62]  Nigel P. Brandon,et al.  Hydrogen and fuel cells: Towards a sustainable energy future , 2008 .

[63]  Sudhanshu S. Pawar,et al.  Thermophilic biohydrogen production: how far are we? , 2013, Applied Microbiology and Biotechnology.

[64]  Hang-Sik Shin,et al.  Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis , 2004 .

[65]  Venkataramana Gadhamshetty,et al.  Fermentative biohydrogen production: Evaluation of net energy gain , 2010 .

[66]  Ruihong Zhang,et al.  The effect of low pressure and mixing on biological hydrogen production via anaerobic fermentation , 2012 .

[67]  M. Adams,et al.  The structure and mechanism of iron-hydrogenases. , 1990, Biochimica et biophysica acta.

[68]  P. Hallenbeck Microbial paths to renewable hydrogen production , 2011 .

[69]  Guido Zacchi,et al.  Techno-economic analysis of a two-step biological process producing hydrogen and methane. , 2010, Bioresource technology.

[70]  S. Mohan,et al.  Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment. , 2012 .

[71]  L. Lynd,et al.  Electrotransformation of Clostridium thermocellum , 2004, Applied and Environmental Microbiology.

[72]  Hang-Sik Shin,et al.  Effect of gas sparging on continuous fermentative hydrogen production , 2006 .

[73]  Richard Sparling,et al.  Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2and ethanol-producing bacteria , 2012, BMC Microbiology.

[74]  Richard Sparling,et al.  Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates , 2006 .

[75]  P. Schönheit,et al.  Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway , 1994, Archives of Microbiology.

[76]  Ming-jun Zhu,et al.  A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse. , 2013, Bioresource technology.

[77]  T. Noike,et al.  Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria , 2002 .

[78]  S. Venkata Mohan,et al.  Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia: Influence of fermentation pH and substrate composition , 2007 .

[79]  Tong Zhang,et al.  Thermophilic H2 production from a cellulose-containing wastewater , 2003, Biotechnology Letters.

[80]  H Yokoi,et al.  Microbial hydrogen production from sweet potato starch residue. , 2001, Journal of bioscience and bioengineering.

[81]  Debabrata Das,et al.  Advances in biohydrogen production processes: An approach towards commercialization , 2009 .

[82]  Irini Angelidaki,et al.  Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. , 2010, Bioresource technology.

[83]  A. Friedl,et al.  Process investigations of extreme thermophilic fermentations for hydrogen production: effect of bubble induction and reduced pressure. , 2012, Bioresource technology.

[84]  A. Stams,et al.  Biological hydrogen production by anaerobic microorganisms , 2009 .

[85]  J. Westpheling,et al.  Methylation by a Unique α-class N4-Cytosine Methyltransferase Is Required for DNA Transformation of Caldicellulosiruptor bescii DSM6725 , 2012, PloS one.

[86]  Christoph Herwig,et al.  A comprehensive and quantitative review of dark fermentative biohydrogen production , 2012, Microbial Cell Factories.

[87]  Kefa Cen,et al.  Cogeneration of H2 and CH4 from water hyacinth by two-step anaerobic fermentation , 2010 .

[88]  T. Fukui,et al.  Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. , 2005, Journal of biotechnology.

[89]  Jo-Shu Chang,et al.  Biohydrogen production with fixed-bed bioreactors , 2002 .

[90]  M. Long,et al.  Optimization of thermophilic fermentative hydrogen production by the newly isolated Caloranaerobacter azorensis H53214 from deep-sea hydrothermal vent environment , 2014 .

[91]  Debabrata Das,et al.  RECENT DEVELOPMENTS IN BIOLOGICAL HYDROGEN PRODUCTION PROCESSES , 2008 .

[92]  Han-Qing Yu,et al.  Comparative performance of mesophilic and thermophilic acidogenic upflow reactors , 2002 .

[93]  T. Veziroglu,et al.  The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet , 2005 .

[94]  Guido Zacchi,et al.  Effects of feedstocks on the process integration of biohydrogen production , 2010 .

[95]  Ahmad A. Zeidan,et al.  Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars , 2009 .

[96]  Aijie Wang,et al.  Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. , 2011, Bioresource technology.

[97]  I. Sakamoto,et al.  Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage. , 2014, Bioresource technology.

[98]  P. N. Sarma,et al.  Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. , 2008, Bioresource technology.

[99]  Zhicheng Lai,et al.  Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture , 2014, Biotechnology for Biofuels.

[100]  Rangan Banerjee,et al.  Status of Biological hydrogen production , 2008 .

[101]  J. Puhakka,et al.  Effects of heat treatment on hydrogen production potential and microbial community of thermophilic compost enrichment cultures. , 2011, Bioresource technology.

[102]  Yinbo Qu,et al.  Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17 , 2008 .

[103]  K Amulya,et al.  Acidogenic spent wash valorization through polyhydroxyalkanoate (PHA) synthesis coupled with fermentative biohydrogen production. , 2014, Bioresource technology.

[104]  S. Singh,et al.  Biohydrogen Production from Cheese Whey Wastewater in a Two-Step Anaerobic Process , 2012, Applied Biochemistry and Biotechnology.

[105]  Debabrata Das,et al.  Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21 , 2006 .

[106]  Walter Wukovits,et al.  Life cycle inventory analysis of biological hydrogen production by thermophilic and photo fermentation of potato steam peels (PSP) , 2010 .

[107]  M. Desvaux Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. , 2005, FEMS microbiology reviews.

[108]  Debabrata Das,et al.  Biohydrogen production by dark fermentation , 2013 .

[109]  Tong Zhang,et al.  Biohydrogen production from starch in wastewater under thermophilic condition. , 2003, Journal of environmental management.

[110]  Sang-Eun Oh,et al.  Biological hydrogen production using a membrane bioreactor , 2004, Biotechnology and bioengineering.

[111]  R. Thauer,et al.  Demonstration of NADH-ferredoxin reductase in two saccharolytic clostridia , 2004, Archiv für Mikrobiologie.

[112]  Anjana Pandey,et al.  An evaluative report and challenges for fermentative biohydrogen production , 2011 .

[113]  Zhong Hu,et al.  Statistical optimization of fermentative hydrogen production from xylose by newly isolated Enterobacter sp. CN1 , 2010 .

[114]  Poonsuk Prasertsan,et al.  Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis. , 2009, Bioresource technology.

[115]  A. Demain,et al.  The Importance of Thermophilic Bacteria in Biotechnology , 1985 .

[116]  A. Reungsang,et al.  Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum KKU-ED1: Culture conditions optimization using mixed xylose/arabinose as substrate , 2013 .

[117]  P. Claassen,et al.  Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus , 2007, Applied Microbiology and Biotechnology.

[118]  E. W. V. van Niel,et al.  Reassessment of hydrogen tolerance in Caldicellulosiruptor saccharolyticus , 2011, Microbial cell factories.

[120]  Dipankar Ghosh,et al.  Advances in fermentative biohydrogen production: the way forward? , 2009, Trends in biotechnology.

[121]  M. Waligórska Fermentative Hydrogen Production - Process Design and Bioreactors , 2012 .

[122]  E. Schmid,et al.  Global land-use implications of first and second generation biofuel targets , 2011 .

[123]  M. Adams,et al.  Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur , 1994, Journal of bacteriology.