Whole Body Locomotion Planning of Humanoid Robots based on a 3D Grid Map

This paper proposes a method for a humanoid robot to generate 3D model of the environment using a stereo vision, find a movable space using it and plan feasible locomotion online. The model is generated by an accumulation of 3D grid maps which are made from the range data of the field of view obtained by a correlation based stereo vision. The locomotion is planned by an online whole body pattern generator which can modify robot's waist height, an upper body posture and so on according to the size of the movable space.

[1]  Jean-Paul Laumond,et al.  Position referencing and consistent world modeling for mobile robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[2]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[3]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[4]  Kurt Konolige,et al.  Visually Realistic Mapping of a Planar Environment with Stereo , 2000, ISER.

[5]  Masayuki Inaba,et al.  Plane segment finder: algorithm, implementation and applications , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[6]  Zvi Shiller,et al.  Planning motion patterns of human figures using a multi-layered grid and the dynamics filter , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[7]  Günther Schmidt,et al.  Information management for gaze control in vision guided biped walking , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Sebastian Thrun,et al.  Real-time acquisition of compact volumetric 3D maps with mobile robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[9]  Masayuki Inaba,et al.  Vision-based 2.5D terrain modeling for humanoid locomotion , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[10]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[11]  Masahiro Fujita,et al.  A small biped entertainment robot exploring attractive applications , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[12]  Masayuki Inaba,et al.  Walking navigation system of humanoid robot using stereo vision based floor recognition and path planning with multi-layered body image , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[13]  Kazuhito Yokoi,et al.  Locomotion planning of humanoid robots to pass through narrow spaces , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[14]  Masayuki Inaba,et al.  Environment manipulation planner for humanoid robots using task graph that generates action sequence , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[15]  Eiichi Yoshida,et al.  Humanoid motion planning for dynamic tasks , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[16]  Masayuki Inaba,et al.  Autonomous 3D walking system for a humanoid robot based on visual step recognition and 3D foot step planner , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[17]  Masahiro Fujita,et al.  A Floor and Obstacle Height Map for 3D Navigation of a Humanoid Robot , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.