Fluctuating magnetism of Co- and Cu-doped NaFeAs

We report an x-ray emission spectroscopy (XES) study of the local fluctuating magnetic moment ( µ bare ) in NaFe 1 − x Co x As and NaFe 1 − x Cu x As. In NaFeAs, the reduced height of the As ions induces a local magnetic moment higher than Ba 2 As 2 , despite lower T N and ordered magnetic moment. As NaFeAs is doped with Co µ bare is slightly reduced, whereas Cu doping leaves it unaffected, indicating a different doping mechanism: based on electron counting for Co whereas impurity scattering dominates in the case of Cu. Finally, we observe an increase of µ bare with temperature in all samples as observed in electron- and hole-doped BaFe 2 As 2 . Since both Co and Cu doping display superconductivity, our findings demonstrate that the formation of Cooper pairs is not connected with the complete loss of fluctuating paramagnetic moments.

[1]  Wang Xiancheng,et al.  Local and collective magnetism of EuFe$_2$As$_2$ , 2017, 1703.09819.

[2]  T. Schmitt,et al.  Magnetic moment evolution and spin freezing in doped BaFe2As2 , 2016, Scientific Reports.

[3]  Chi,et al.  Phase diagram and neutron spin resonance of superconducting NaFe _ { 1 − x } Cu _ { x } As , 2017 .

[4]  T. Schmitt,et al.  Presence of magnetic excitations in SmFeAsO , 2016, 1611.03620.

[5]  P. Glatzel,et al.  Evidence of Mott physics in iron pnictides from x-ray spectroscopy , 2016, 1607.07417.

[6]  Z. Meng,et al.  Effect of Nematic Order on the Low-Energy Spin Fluctuations in Detwinned BaFe_{1.935}Ni_{0.065}As_{2}. , 2016, Physical review letters.

[7]  Yang Liu,et al.  Orbital-selective Mott phase of Cu-substituted iron-based superconductors , 2016, 1607.01900.

[8]  P. Dai,et al.  NaFe_{0.56}Cu_{0.44}As: A Pnictide Insulating Phase Induced by On-Site Coulomb Interaction. , 2016, Physical Review Letters.

[9]  S. Chi,et al.  Electron doping evolution of the neutron spin resonance in NaFe1-xCoxAs , 2016, 1605.06890.

[10]  T. Perring,et al.  Electron doping evolution of the magnetic excitations in NaFe1 xCoxAs , 2016, 1605.02695.

[11]  K. Shimizu,et al.  Origin of Pressure-induced Superconducting Phase in KxFe2−ySe2 studied by Synchrotron X-ray Diffraction and Spectroscopy , 2016, Scientific Reports.

[12]  T. Schmitt,et al.  Intralayer doping effects on the high-energy magnetic correlations in NaFeAs , 2016, 1611.03621.

[13]  A. Roekeghem,et al.  Spectral properties of transition metal pnictides and chalcogenides: Angle-resolved photoemission spectroscopy and dynamical mean-field theory , 2015, 1512.08245.

[14]  T. Ayral,et al.  Uncertainty principle for experimental measurements: Fast versus slow probes , 2015, Scientific Reports.

[15]  S. Chi,et al.  A Mott insulator continuously connected to iron pnictide superconductors , 2015, Nature Communications.

[16]  L. Zou,et al.  Localization and orbital selectivity in iron-based superconductors with Cu substitution , 2015, 1506.00767.

[17]  E. van Heumen,et al.  Direct observation of a Fermi liquid-like normal state in an iron-pnictide superconductor , 2015, Scientific Reports.

[18]  J. Rueff,et al.  Electronic Properties of BaFe2As2 upon Doping and Pressure: The Prominent Role of the As p Orbitals. , 2015, Physical review letters.

[19]  H. Hosono,et al.  Iron-based superconductors: Current status of materials and pairing mechanism , 2015, 1504.04919.

[20]  P. Dai Antiferromagnetic order and spin dynamics in iron-based superconductors , 2015, 1503.02340.

[21]  L. Boeri,et al.  Structural origin of the anomalous temperature dependence of the local magnetic moments in the CaFe2As2 family of materials. , 2014, Physical review letters.

[22]  Peter D. Johnson,et al.  Iron-Based Superconductivity , 2015 .

[23]  T. Nomura,et al.  Resonant inelastic x-ray scattering study of electronic excitations in insulating K$_{0.83}$Fe$_{1.53}$Se$_2$ , 2014, 1412.6429.

[24]  T. Mizokawa,et al.  Temperature dependence of iron local magnetic moment in phase-separated superconducting chalcogenide , 2014, 1501.01558.

[25]  N. Mannella The magnetic moment enigma in Fe-based high temperature superconductors , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  P. Dai,et al.  Anisotropic neutron spin resonance in underdoped superconducting NaFe1−xCoxAs , 2014, 1409.6416.

[27]  X. -. Wang,et al.  The anomaly Cu doping effects on LiFeAs superconductors , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  D. Feng Extraordinary Doping Effects on Quasiparticle Scattering and Bandwidth in Iron-Based Superconductors , 2014 .

[29]  G. Kotliar,et al.  Effect of Pnictogen Height on Spin Waves in Iron Pnictides , 2014 .

[30]  T. Shibauchi,et al.  A Quantum Critical Point Lying Beneath the Superconducting Dome in Iron Pnictides , 2013, 1304.6387.

[31]  Zhongti Sun,et al.  ARPES study of the effect of Cu substitution on the electronic structure of NaFeAs , 2013 .

[32]  Meng Wang,et al.  Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides , 2013, Nature Communications.

[33]  X. H. Chen,et al.  Phase diagram and physical properties of NaFe 1 − x Cu x As single crystals , 2013, 1307.6121.

[34]  M. Nielsen,et al.  Spin-state studies with XES and RIXS: From static to ultrafast. , 2013 .

[35]  D. Casa,et al.  Spin-state transition in the Fe pnictides. , 2012, Physical review letters.

[36]  Antoine Georges,et al.  Strong Correlations from Hund’s Coupling , 2012, 1207.3033.

[37]  Y. Tomioka,et al.  Dependence of carrier doping on the impurity potential in transition-metal-substituted FeAs-based superconductors. , 2012, Physical review letters.

[38]  J. Rueff,et al.  Stability of the Fe electronic structure through temperature-, doping-, and pressure-induced transitions in the BaFe 2 As 2 superconductors , 2012 .

[39]  C. L. Zhang,et al.  Anisotropic but nodeless superconducting gap in the presence of spin density wave in iron-pnictide superconductor NaFe1-xCoxAs , 2012, 1209.1967.

[40]  E. Dagotto,et al.  Magnetism and its microscopic origin in iron-based high-temperature superconductors , 2012, Nature Physics.

[41]  T. Mizokawa,et al.  Coexistence of different electronic phases in the K 0.8 Fe 1.6 Se 2 superconductor: A bulk-sensitive hard x-ray spectroscopy study , 2012, 1206.3046.

[42]  P. Glatzel,et al.  1s2p resonant inelastic x-ray scattering-magnetic circular dichroism: A sensitive probe of 3d magnetic moments using hard x-ray photons , 2012 .

[43]  Chia-Hui Lin,et al.  Do transition-metal substitutions dope carriers in iron-based superconductors? , 2011, Physical review letters.

[44]  A. Millis,et al.  Satellites and large doping and temperature dependence of electronic properties in hole-doped BaFe2As2 , 2011, Nature Physics.

[45]  Takashi Takahashi,et al.  Fe-based superconductors: an angle-resolved photoemission spectroscopy perspective , 2011, 1110.6751.

[46]  K. H. Kim,et al.  Revealing the Dual Nature of Magnetism in Iron Pnictides and Iron Chalcogenides Using X-ray Emission Spectroscopy , 2011, 1107.2211.

[47]  T. M. Garitezi,et al.  Co-substitution effects on the Fe valence in the BaFe2As2 superconducting compound: a study of hard x-ray absorption spectroscopy. , 2011, Physical review letters.

[48]  H. Kee,et al.  Hidden spin liquid in an antiferromagnet: Applications to FeCrAs , 2011, 1107.1002.

[49]  G. Stewart Superconductivity in iron compounds , 2011, 1106.1618.

[50]  G. Kotliar,et al.  Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. , 2011, Nature materials.

[51]  Tetsuo Takahashi,et al.  Electron-hole asymmetry in the superconductivity of doped BaFe 2 As 2 seen via the rigid chemical-potential shift in photoemission , 2011 .

[52]  D. Johnston,et al.  The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides , 2010, 1005.4392.

[53]  G. Sawatzky,et al.  Where are the extra d electrons in transition-metal-substituted iron pnictides? , 2010, Physical review letters.

[54]  K. Held,et al.  Dichotomy between large local and small ordered magnetic moments in iron-based superconductors. , 2010, Physical review letters.

[55]  Q. Huang,et al.  Structural and magnetic phase transitions in Na$_{1-\delta}$FeAs , 2009, 0905.0525.

[56]  Z. Hussain,et al.  ARPES studies of the electronic structure of LaOFe (P,As) , 2009, 0902.2503.

[57]  T. Sato,et al.  Angle-resolved photoemission spectroscopy of the Fe-Based Ba0.6K0.4Fe2As2 high temperature superconductor: evidence for an orbital selective electron-mode coupling. , 2009, Physical review letters.

[58]  I. Swainson,et al.  A novel non–Fermi-liquid state in the iron-pnictide FeCrAs , 2008, 0811.3439.

[59]  M. Acet,et al.  Short-range magnetic collapse of Fe under high pressure at high temperatures observed using x-ray emission spectroscopy , 2008 .

[60]  M. Troyer,et al.  Spin freezing transition and non-Fermi-liquid self-energy in a three-orbital model. , 2008, Physical review letters.

[61]  A. Shukla,et al.  Probing the 3d spin momentum with X-ray emission spectroscopy: the case of molecular-spin transitions. , 2006, The journal of physical chemistry. B.

[62]  A. Shukla,et al.  Temperature- and pressure-induced spin-state transitions in LaCoO 3 , 2005, cond-mat/0510569.

[63]  Uwe Bergmann,et al.  High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes—electronic and structural information , 2005 .

[64]  H. Mao,et al.  Pressure-Induced High-Spin to Low-Spin Transition in FeS Evidenced by X-Ray Emission Spectroscopy , 1998, cond-mat/9806245.

[65]  K. Hodgson,et al.  A Multiplet Analysis of Fe K-Edge 1s → 3d Pre-Edge Features of Iron Complexes , 1997 .

[66]  S. Ishida,et al.  Magnetic properties and electronic structures of CrMZ (M Fe, Co, Ni; Z P, As) , 1996 .

[67]  W. H. Armstrong,et al.  High-resolution manganese X-ray fluorescence spectroscopy. Oxidation-state and spin-state sensitivity , 1994 .

[68]  K. Tsutsumi,et al.  X-ray Mn K β emission spectra of manganese oxides and manganates , 1976 .

[69]  D. S. Urch,et al.  X-Ray emission spectroscopy , 1971 .