Molecular evolution of color vision in vertebrates.

[1]  Krzysztof Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Science.

[2]  R. Birge,et al.  Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion. , 2001, Biochemistry.

[3]  S. Yokoyama,et al.  Molecular genetics and the evolution of ultraviolet vision in vertebrates , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Yokoyama,et al.  The molecular genetics and evolution of red and green color vision in vertebrates. , 2001, Genetics.

[5]  D. Oprian,et al.  Salamander UV cone pigment: Sequence, expression, and spectral properties , 2001, Visual Neuroscience.

[6]  S. Yokoyama,et al.  Adaptive evolution of the African and Indonesian coelacanths to deep-sea environments. , 2000, Gene.

[7]  S. Yokoyama,et al.  Genetics and evolution of ultraviolet vision in vertebrates , 2000, FEBS letters.

[8]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[9]  S. Yokoyama Molecular evolution of vertebrate visual pigments , 2000, Progress in Retinal and Eye Research.

[10]  N. Blow,et al.  Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  T. Cronin,et al.  Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. , 2000, Biochemistry.

[12]  S. Yokoyama,et al.  The molecular genetics of red and green color vision in mammals. , 1999, Genetics.

[13]  R. Birge,et al.  Photochemistry of the primary event in short-wavelength visual opsins at low temperature. , 1999, Biochemistry.

[14]  D. Oprian,et al.  Spectral tuning in the human blue cone pigment. , 1999, Biochemistry.

[15]  G. Kochendoerfer,et al.  How color visual pigments are tuned. , 1999, Trends in biochemical sciences.

[16]  N. Blow,et al.  Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae). , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. Caldwell,et al.  Indonesian ‘king of the sea’ discovered , 1998, Nature.

[18]  Kate S. Carroll,et al.  Mechanisms of Spectral Tuning in Blue Cone Visual Pigments , 1998, The Journal of Biological Chemistry.

[19]  S. Yokoyama,et al.  Genetic analyses of the green visual pigments of rabbit (Oryctolagus cuniculus) and rat (Rattus norvegicus). , 1998, Gene.

[20]  B. Sjöberg,et al.  Localization and Characterization of Two Nucleotide-binding Sites on the Anaerobic Ribonucleotide Reductase from Bacteriophage T4* , 1998, The Journal of Biological Chemistry.

[21]  T. Goldsmith,et al.  Spectral sensitivity of cones in the goldfish, Carassius auratus , 1998, Vision Research.

[22]  S. Yokoyama,et al.  The "five-sites" rule and the evolution of red and green color vision in mammals. , 1998, Molecular biology and evolution.

[23]  A. Dean,et al.  The structural basis of molecular adaptation. , 1998, Molecular biology and evolution.

[24]  S. Kawamura,et al.  Regeneration of ultraviolet pigments of vertebrates , 1998, FEBS letters.

[25]  J. I. Fasick,et al.  Mechanism of spectral tuning in the dolphin visual pigments. , 1998, Biochemistry.

[26]  J. Nathans,et al.  Mechanisms of spectral tuning in the mouse green cone pigment. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[27]  I. Cuthill,et al.  Ultraviolet plumage colors predict mate preferences in starlings. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  H. Kandori,et al.  Water and peptide backbone structure in the active center of bovine rhodopsin. , 1997, Biochemistry.

[29]  S. Yokoyama,et al.  ADAPTIVE EVOLUTION OF PHOTORECEPTORS AND VISUAL PIGMENTS IN VERTEBRATES , 1996 .

[30]  Innes C. Cuthill,et al.  Ultraviolet vision and mate choice in zebra finches , 1996, Nature.

[31]  M. Nei,et al.  A new method of inference of ancestral nucleotide and amino acid sequences. , 1995, Genetics.

[32]  C. Sandorfy,et al.  RETINYLIDENE‐OPSIN SCHIFF BASE CHROMOPHORES AND THEIR ACCESSIBILITY TO WATER , 1995 .

[33]  S. Yokoyama,et al.  Rhodopsin from the fish, Astyanax: role of tyrosine 261 in the red shift. , 1995, Investigative ophthalmology & visual science.

[34]  H. Fricke,et al.  Yet more danger for coelacanths , 1995, Nature.

[35]  J. Viitala,et al.  Attraction of kestrels to vole scent marks visible in ultraviolet light , 1995, Nature.

[36]  F. I. Hárosi An analysis of two spectral properties of vertebrate visual pigments , 1994, Vision Research.

[37]  D. Oprian,et al.  Molecular determinants of human red/green color discrimination , 1994, Neuron.

[38]  R. Callender,et al.  Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange. , 1994, Biophysical journal.

[39]  J. Nathans,et al.  Rhodopsin activation: effects on the metarhodopsin I-metarhodopsin II equilibrium of neutralization or introduction of charged amino acids within putative transmembrane segments. , 1993, Biochemistry.

[40]  K. Fahmy,et al.  Light-dependent transducin activation by an ultraviolet-absorbing rhodopsin mutant. , 1993, Biochemistry.

[41]  R. Foster,et al.  Vitamin A2-based photopigments within the pineal gland of a fully terrestrial vertebrate , 1993, Neuroscience Letters.

[42]  S. Pääbo,et al.  Which home for coelacanth? , 1993, Nature.

[43]  D. Oprian,et al.  Identification of the Cl(-)-binding site in the human red and green color vision pigments. , 1993, Biochemistry.

[44]  Y. Fukada,et al.  Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[45]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[46]  T. Sakmar,et al.  Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin. Amino acid substitutions responsible for red-green color pigment spectral tuning. , 1992, The Journal of biological chemistry.

[47]  G H Jacobs,et al.  Spectral tuning of pigments underlying red-green color vision. , 1991, Science.

[48]  S. Yokoyama,et al.  Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J Nathans,et al.  Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin. , 1990, Biochemistry.

[50]  H. Khorana,et al.  Role of the intradiscal domain in rhodopsin assembly and function. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. Nathans Determinants of visual pigment absorbance: role of charged amino acids in the putative transmembrane segments. , 1990, Biochemistry.

[52]  D. Oprian,et al.  Effect of carboxylic acid side chains on the absorption maximum of visual pigments. , 1989, Science.

[53]  A. Whitmore,et al.  Seasonal variation in cone sensitivity and short-wave absorbing visual pigments in the rudd Scardinius erythrophthalmus , 1989, Journal of Comparative Physiology A.

[54]  H. Khorana,et al.  Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[55]  H. Khorana,et al.  Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[57]  Barry Honig,et al.  ON THE MECHANISM OF WAVELENGTH REGULATION IN VISUAL PIGMENTS , 1985, Photochemistry and photobiology.

[58]  J. Nathans,et al.  Isolation and nucleotide sequence of the gene encoding human rhodopsin. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Nathans,et al.  Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin , 1983, Cell.

[60]  D. Burkhardt Birds, berries and UV , 1982, Naturwissenschaften.

[61]  G. H. Jacobs Comparative Color Vision , 1981 .

[62]  C. Rafferty,et al.  THE INVOLVEMENT OF WATER AT THE RETINAL BINDING SITE IN RHODOPSIN AND EARLY LIGHT‐INDUCED INTRAMOLECULAR PROTON TRANSFER , 1981, Photochemistry and photobiology.

[63]  J. Bowmaker,et al.  The visual pigments and oil droplets of the chicken retina , 1977, Vision Research.

[64]  Tatsuo Suzuki,et al.  Absorption Spectrum of Rhodopsin denatured with Acid , 1968, Nature.

[65]  G. L. Walls,et al.  The Vertebrate Eye and Its Adaptive Radiation , 1943 .

[66]  H. E. Roaf The Vertebrate Eye and its Adaptive Radiation , 1943, Nature.

[67]  G. L. Walls The Reptilian Retina , 1934 .

[68]  P. Argos,et al.  The structure of bovine rhodopsin , 2004, Biophysics of structure and mechanism.

[69]  S. Yokoyama Phylogenetic analysis and experimental approaches to study color vision in vertebrates. , 2000, Methods in enzymology.

[70]  S. Yokoyama,et al.  Molecular genetic basis of adaptive selection: examples from color vision in vertebrates. , 1997, Annual review of genetics.

[71]  J. Lythgoe The Ecology of vision , 1979 .

[72]  R. M. Boynton Human color vision , 1979 .

[73]  M. O. Dayhoff,et al.  22 A Model of Evolutionary Change in Proteins , 1978 .

[74]  A. Oseroff,et al.  Rapid-flow resonance Raman spectroscopy of photolabile molecules: rhodopsin and isorhodopsin. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[75]  M. O. Dayhoff,et al.  Atlas of protein sequence and structure , 1965 .

[76]  F. Collins,et al.  Studies in vitamin A; reactions of retinene1 with amino compounds. , 1949, The Biochemical journal.