Determining optimal multilevel Monte Carlo parameters with application to fault tolerance

[1]  K. Mehlhorn,et al.  Algorithms and Data Structures: The Basic Toolbox , 2008 .

[2]  Peter Arbenz,et al.  A fault tolerant implementation of Multi-Level Monte Carlo methods , 2013, PARCO.

[3]  Bianca Schroeder,et al.  A Large-Scale Study of Failures in High-Performance Computing Systems , 2006, IEEE Transactions on Dependable and Secure Computing.

[4]  Siddhartha Mishra,et al.  Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..

[5]  P. Arbenz,et al.  Multilevel Monte Carlo for the Feynman–Kac formula for the Laplace equation , 2014, 1401.3891.

[6]  Thomas Hérault,et al.  An evaluation of User-Level Failure Mitigation support in MPI , 2012, Computing.

[7]  Niklaus Wirth,et al.  Algorithms and Data Structures , 1989, Lecture Notes in Computer Science.

[8]  Michael B. Giles,et al.  Multilevel Monte Carlo methods , 2013, Acta Numerica.

[9]  C. Schwab,et al.  Multi-level Monte Carlo finite volume methods for shallow water equations with uncertain topography in multi-dimensions , 2011 .

[10]  Franck Cappello,et al.  Fault Tolerance in Petascale/ Exascale Systems: Current Knowledge, Challenges and Research Opportunities , 2009, Int. J. High Perform. Comput. Appl..

[11]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[12]  Kurt B. Ferreira,et al.  Fault-tolerant linear solvers via selective reliability , 2012, ArXiv.

[13]  P. Arbenz,et al.  Computing the Feynman-Kac formula efficiently with multilevel Monte Carlo , 2014 .

[14]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[15]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[16]  R. Tempone,et al.  A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.

[17]  F. Müller Stochastic methods for uncertainty quantification in subsurface flow and transport problems , 2014 .

[18]  Peter Arbenz,et al.  Intrinsic fault tolerance of multilevel Monte Carlo methods , 2015, J. Parallel Distributed Comput..

[19]  Jonas Sukys,et al.  Multilevel Monte Carlo Finite Volume Methods for Shallow Water Equations with Uncertain Topography in Multi-dimensions , 2012, SIAM J. Sci. Comput..

[20]  Jonas Sukys,et al.  Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..

[21]  Richard Wolski,et al.  Modeling Machine Availability in Enterprise and Wide-Area Distributed Computing Environments , 2005, Euro-Par.

[22]  Florian Müller,et al.  Multilevel Monte Carlo for two phase flow and Buckley-Leverett transport in random heterogeneous porous media , 2013, J. Comput. Phys..

[23]  Peter Arbenz,et al.  Intrinsic fault tolerance of multi level Monte Carlo methods , 2012 .