Determining optimal multilevel Monte Carlo parameters with application to fault tolerance
暂无分享,去创建一个
[1] K. Mehlhorn,et al. Algorithms and Data Structures: The Basic Toolbox , 2008 .
[2] Peter Arbenz,et al. A fault tolerant implementation of Multi-Level Monte Carlo methods , 2013, PARCO.
[3] Bianca Schroeder,et al. A Large-Scale Study of Failures in High-Performance Computing Systems , 2006, IEEE Transactions on Dependable and Secure Computing.
[4] Siddhartha Mishra,et al. Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..
[5] P. Arbenz,et al. Multilevel Monte Carlo for the Feynman–Kac formula for the Laplace equation , 2014, 1401.3891.
[6] Thomas Hérault,et al. An evaluation of User-Level Failure Mitigation support in MPI , 2012, Computing.
[7] Niklaus Wirth,et al. Algorithms and Data Structures , 1989, Lecture Notes in Computer Science.
[8] Michael B. Giles,et al. Multilevel Monte Carlo methods , 2013, Acta Numerica.
[9] C. Schwab,et al. Multi-level Monte Carlo finite volume methods for shallow water equations with uncertain topography in multi-dimensions , 2011 .
[10] Franck Cappello,et al. Fault Tolerance in Petascale/ Exascale Systems: Current Knowledge, Challenges and Research Opportunities , 2009, Int. J. High Perform. Comput. Appl..
[11] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[12] Kurt B. Ferreira,et al. Fault-tolerant linear solvers via selective reliability , 2012, ArXiv.
[13] P. Arbenz,et al. Computing the Feynman-Kac formula efficiently with multilevel Monte Carlo , 2014 .
[14] Andrea Barth,et al. Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.
[15] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[16] R. Tempone,et al. A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.
[17] F. Müller. Stochastic methods for uncertainty quantification in subsurface flow and transport problems , 2014 .
[18] Peter Arbenz,et al. Intrinsic fault tolerance of multilevel Monte Carlo methods , 2015, J. Parallel Distributed Comput..
[19] Jonas Sukys,et al. Multilevel Monte Carlo Finite Volume Methods for Shallow Water Equations with Uncertain Topography in Multi-dimensions , 2012, SIAM J. Sci. Comput..
[20] Jonas Sukys,et al. Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..
[21] Richard Wolski,et al. Modeling Machine Availability in Enterprise and Wide-Area Distributed Computing Environments , 2005, Euro-Par.
[22] Florian Müller,et al. Multilevel Monte Carlo for two phase flow and Buckley-Leverett transport in random heterogeneous porous media , 2013, J. Comput. Phys..
[23] Peter Arbenz,et al. Intrinsic fault tolerance of multi level Monte Carlo methods , 2012 .