The exact satisfiability threshold for a potentially intractable random constraint satisfaction problem

We determine the exact threshold of satisfiability for random instances of a particular NP-hard constraint satisfaction problem. The problem appears to share many of the threshold characteristics of random k-SAT for k /spl ges/ 3; for example, we prove the problem almost surely has high resolution complexity. We also prove the analogue of the (2+p)-SAT conjecture for a class of problems that includes this problem and XOR-SAT.

[1]  Rémi Monasson,et al.  2+p-SAT: Relation of typical-case complexity to the nature of the phase transition , 1999, Random Struct. Algorithms.

[2]  Andreas Goerdt,et al.  A Threshold for Unsatisfiability , 1992, MFCS.

[3]  Cristopher Moore,et al.  The phase transition in 1-in-k SAT and NAE 3-SAT , 2001, SODA '01.

[4]  S. Kirkpatrick,et al.  Phase transition and search cost in the 2+p-sat problem , 1996 .

[5]  Simona Cocco,et al.  Approximate analysis of search algorithms with "physical" methods , 2003, ArXiv.

[6]  Abraham D. Flaxman A sharp threshold for a random constraint satisfaction problem , 2004, Discret. Math..

[7]  Rémi Monasson,et al.  Statistical mechanics methods and phase transitions in optimization problems , 2001, Theor. Comput. Sci..

[8]  M. Mézard,et al.  Two Solutions to Diluted p-Spin Models and XORSAT Problems , 2003 .

[9]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[10]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[11]  Bruce A. Reed,et al.  Mick gets some (the odds are on his side) (satisfiability) , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[12]  Barbara M. Smith,et al.  Constructing an asymptotic phase transition in random binary constraint satisfaction problems , 2001, Theor. Comput. Sci..

[13]  Wei Li,et al.  Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..

[14]  Riccardo Zecchina,et al.  Constraint Satisfaction by Survey Propagation , 2002, Computational Complexity and Statistical Physics.

[15]  Michael Molloy Models and thresholds for random constraint satisfaction problems , 2002, STOC '02.

[16]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[17]  Evangelos Kranakis,et al.  Rigorous results for random (2+p)-SAT , 2001, Theor. Comput. Sci..

[18]  Wei Li,et al.  Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..

[19]  Nadia Creignou,et al.  Generalized satisfiability problems: minimal elements and phase transitions , 2003, Theor. Comput. Sci..

[20]  Toby Walsh,et al.  Random Constraint Satisfaction: Flaws and Structure , 2004, Constraints.

[21]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[22]  Alan M. Frieze,et al.  Random k-Sat: A Tight Threshold For Moderately Growing k , 2005, Comb..

[23]  Dimitris Achlioptas,et al.  Lower bounds for random 3-SAT via differential equations , 2001, Theor. Comput. Sci..

[24]  Lefteris M. Kirousis,et al.  Selecting Complementary Pairs of Literals , 2003, Electron. Notes Discret. Math..

[25]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[26]  S. Kirkpatrick,et al.  2+p-SAT: relation of typical-case complexity to the nature of the phase transition , 1999 .

[27]  George Havas,et al.  A Family of Perfect Hashing Methods , 1996, Comput. J..

[28]  Michael Molloy,et al.  The pure literal rule threshold and cores in random hypergraphs , 2004, SODA '04.

[29]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[30]  Cristopher Moore,et al.  The asymptotic order of the random k-SAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[31]  Martin E. Dyer,et al.  A probabilistic analysis of randomly generated binary constraint satisfaction problems , 2003, Theor. Comput. Sci..

[32]  David G. Mitchell,et al.  Resolution Complexity of Random Constraints , 2002, CP.

[33]  Andrea Montanari,et al.  Approximate analysis of search algorithms with , 2003 .

[34]  AchlioptasDimitris,et al.  Random Constraint Satisfaction , 2001 .

[35]  Olivier Dubois,et al.  Typical random 3-SAT formulae and the satisfiability threshold , 2000, SODA '00.

[36]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[37]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[38]  François Hennecart,et al.  Stirling distributions and Stirling numbers of the second kind. Computational problems in statistics , 1994, Kybernetika.

[39]  Yannis C. Stamatiou,et al.  Random Constraint Satisfaction a More Accurate Picture , 2022 .

[40]  Gregory B. Sorkin,et al.  IBM Research Report The Satisfiability Threshold of Random 3-SAT Is at Least 3.52 , 2003 .

[41]  Mohammad R. Salavatipour,et al.  The resolution complexity of random constraint satisfaction problems , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[42]  Olivier Dubois,et al.  The 3-XORSAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[43]  Alan M. Frieze,et al.  The satisfiability threshold for randomly generated binary constraint satisfaction problems , 2006, RANDOM-APPROX.

[44]  Yong Gao,et al.  Resolution complexity of random constraint satisfaction problems: Another half of the story , 2005, Discret. Appl. Math..

[45]  Tom M. Apostol,et al.  Book Reviews: Mathematical Analysis. A Modern Approach to Advanced Calculus , 1958 .

[46]  Harold S. Connamacher A Random Constraint Satisfaction Problem That Seems Hard for DPLL , 2004, SAT.

[47]  Michael Molloy,et al.  A sharp threshold in proof complexity yields lower bounds for satisfiability search , 2004, J. Comput. Syst. Sci..

[48]  R. Zecchina,et al.  Tricritical points in random combinatorics: the -SAT case , 1998, cond-mat/9810008.

[49]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .