From Dynamic Programming to Greedy Algorithms

A calculus of relations is used to reason about specifications and algorithms for optimisation problems. It is shown how certain greedy algorithms can be seen as refinements of dynamic programming. Throughout, the maximum lateness problem is used as a motivating example.

[1]  Péter Szeredi Logic Programming: Proceedings of the 1990 North American Conference : Saumya Debray and Manuel Hermenegildo, eds., (MIT Press, Cambridge, MA, 1990), Price £49.50 ($74.25 in Europe), ISBN 0-262-54058-4.☆ , 1992 .

[2]  J. Michael Spivey A Categorial Approch to the Theory of Lists , 1989, MPC.

[3]  J. Lambek A fixpoint theorem for complete categories , 1968 .

[4]  Ron Shamir,et al.  An O(n log2 n) Algorithm for the Maximum Weighted Tardiness Problem , 1989, Inf. Process. Lett..

[5]  G. M. Kelly,et al.  A $2$-categorical approach to change of base and geometric morphisms I , 1991 .

[6]  Eugene L. Lawler,et al.  Optimal Sequencing of a Single Machine Subject to Precedence Constraints , 1973 .

[7]  Michael A. Arbib,et al.  Algebraic Approaches to Program Semantics , 1986, Texts and Monographs in Computer Science.

[8]  Michael Barr,et al.  Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.

[9]  Grant Malcolm Homomorphisms and Promotability , 1989, MPC.

[10]  Maarten M. Fokkinga,et al.  Law and order in algorithmics , 1992 .

[11]  Oege de Moor,et al.  Categories, relations and dynamic programming , 1994, Mathematical Structures in Computer Science.

[12]  Roland Carl Backhouse,et al.  A relational theory of datatypes , 1992 .

[13]  Douglas R. Smith Applications of a Strategy for Designing Divide-and-Conquer Algorithms , 1987, Sci. Comput. Program..

[14]  G. Malcolm,et al.  Data Structures and Program Transformation , 1990, Sci. Comput. Program..

[15]  Edsger W. Dijkstra,et al.  A Discipline of Programming , 1976 .