Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease

[1]  A. Abramov,et al.  Alpha-Synuclein and Mitochondrial Dysfunction in Parkinson’s Disease , 2018, Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology.

[2]  Alexis Battle,et al.  Impact of regulatory variation from RNA to protein , 2015, Science.

[3]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[4]  S. Gygi,et al.  Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. , 2014, Molecular cell.

[5]  Alexander E. Ivliev,et al.  Systems-Based Analyses of Brain Regions Functionally Impacted in Parkinson's Disease Reveals Underlying Causal Mechanisms , 2014, PloS one.

[6]  Chuong B. Do,et al.  Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease , 2014, Nature Genetics.

[7]  B. Kuster,et al.  Mass-spectrometry-based draft of the human proteome , 2014, Nature.

[8]  N. Sonenberg,et al.  Translational control of immune responses: from transcripts to translatomes , 2014, Nature Immunology.

[9]  Hagai Bergman,et al.  Long Non-Coding RNA and Alternative Splicing Modulations in Parkinson's Leukocytes Identified by RNA Sequencing , 2014, PLoS Comput. Biol..

[10]  Dan Xie,et al.  Variation and Genetic Control of Protein Abundance in Humans , 2013, Nature.

[11]  D. D. Di Monte,et al.  Oxidative and nitrative alpha‐synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies , 2013, Journal of neurochemistry.

[12]  A. Schapira,et al.  α-Synuclein and Mitochondrial Dysfunction in Parkinson’s Disease , 2013, Molecular Neurobiology.

[13]  Sarah R. Langley,et al.  Proteomics: from single molecules to biological pathways , 2012, Cardiovascular research.

[14]  Wei Li,et al.  RSeQC: quality control of RNA-seq experiments , 2012, Bioinform..

[15]  E. Lauterbach Psychotropic drug effects on gene transcriptomics relevant to Parkinson's disease , 2012, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[16]  J. Vance,et al.  Gene Expression Profiles in Parkinson Disease Prefrontal Cortex Implicate FOXO1 and Genes under Its Transcriptional Regulation , 2012, PLoS genetics.

[17]  A. DeStefano,et al.  Postmortem Interval Influences α-Synuclein Expression in Parkinson Disease Brain , 2012, Parkinson's disease.

[18]  Eden R Martin,et al.  Meta‐analysis of Parkinson's Disease: Identification of a novel locus, RIT2 , 2012, Annals of neurology.

[19]  Andrew E. Jaffe,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .

[20]  T. Quintela,et al.  Neuroprotective and neuroregenerative properties of metallothioneins , 2012, IUBMB life.

[21]  A. Başak,et al.  The Central Theme of Parkinson’s Disease: α-Synuclein , 2012, Molecular Neurobiology.

[22]  L. Moran,et al.  Up-regulation of metallothionein gene expression in Parkinsonian astrocytes , 2011, neurogenetics.

[23]  S. Gygi,et al.  ms3 eliminates ratio distortion in isobaric multiplexed quantitative , 2011 .

[24]  Richard H. Myers,et al.  Decreased glutamic acid decarboxylase mRNA expression in prefrontal cortex in Parkinson's disease , 2010, Experimental Neurology.

[25]  S. Guan,et al.  Analysis of proteome dynamics in the mouse brain , 2010, Proceedings of the National Academy of Sciences.

[26]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[27]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[28]  M. Naumann,et al.  Control of NF-kappaB activation by the COP9 signalosome. , 2010, Biochemical Society transactions.

[29]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[30]  E. Marcotte,et al.  Global signatures of protein and mRNA expression levelsw , 2009 .

[31]  M. Tansey,et al.  Neuroinflammation in Parkinson’s Disease , 2009, Journal of Neuroimmune Pharmacology.

[32]  A. Brice,et al.  Parkinson's disease: from monogenic forms to genetic susceptibility factors. , 2009, Human molecular genetics.

[33]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[34]  Steven P Gygi,et al.  The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry , 2008, Nature Protocols.

[35]  M. Stephens,et al.  High-Resolution Mapping of Expression-QTLs Yields Insight into Human Gene Regulation , 2008, PLoS genetics.

[36]  Manuel B. Graeber,et al.  Neuronal pentraxin II is highly upregulated in Parkinson’s disease and a novel component of Lewy bodies , 2007, Acta Neuropathologica.

[37]  G. Deuschl,et al.  Inflammation in Parkinson's diseases and other neurodegenerative diseases: cause and therapeutic implications. , 2007, Current pharmaceutical design.

[38]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[39]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[40]  A. DeStefano,et al.  Sepiapterin reductase expression is increased in Parkinson's disease brain tissue , 2007, Brain Research.

[41]  U. Brunk,et al.  Metallothionein protects against oxidative stress-induced lysosomal destabilization. , 2006, The Biochemical journal.

[42]  C. Tanner,et al.  Nongenetic causes of Parkinson's disease. , 2006, Journal of neural transmission. Supplementum.

[43]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Andrew Lees,et al.  Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson's Disease , 2004, Neuron.

[45]  J. Aharon-Peretz,et al.  Mutations in the glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. , 2004, The New England journal of medicine.

[46]  Gordon K Smyth,et al.  Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2004, Statistical applications in genetics and molecular biology.

[47]  Daniel R. Scoles,et al.  The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. , 2003, Human molecular genetics.

[48]  M. Gerstein,et al.  Comparing protein abundance and mRNA expression levels on a genomic scale , 2003, Genome Biology.

[49]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Robert Tibshirani,et al.  Statistical Significance for Genome-Wide Experiments , 2003 .

[51]  P. Mcgeer,et al.  Inflammation in Parkinson's disease. , 2001, Advances in neurology.

[52]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[53]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[54]  M. Polymeropoulos,et al.  Mapping of a Gene for Parkinson's Disease to Chromosome 4q21-q23 , 1996, Science.

[55]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[56]  R. Feldman,et al.  Environmental Toxins and Parkinson's Disease , 2005 .