Titania-based photocatalysts—crystal growth, doping and heterostructuring

Semiconductor photocatalysts have important applications in renewable energy and environment fields. To overcome the serious drawbacks of low efficiency and narrow light-response range in most stable semiconductor photocatalysts, many strategies have been developed in the past decades. This review attempts to provide a comprehensive update and examination of some fundamental issues in titania (TiO2)-based semiconductor photocatalysts, such as crystal growth, doping and heterostructuring. We focus especially on recent progress in exploring new strategies to design TiO2-based photocatalysts with unique structures and properties, elucidating the chemical states and distribution of dopants in doped TiO2, designing and fabricating integrated heterostructure photocatalysts with different charge-carrier transfer pathways, and finally identifying the key factors in determining the photocatalytic efficiency of titania-based photocatalysts.

[1]  J. Yates,et al.  The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile Single Crystals , 2004 .

[2]  Y. Konishi,et al.  A patterned TiO(2)(anatase)/TiO(2)(rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. , 2002, Angewandte Chemie.

[3]  Anusorn Kongkanand,et al.  Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. , 2008, Journal of the American Chemical Society.

[4]  H. Arakawa,et al.  Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation. , 2001, Chemical communications.

[5]  Hironori Arakawa,et al.  Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst , 2001, Nature.

[6]  Jiaguo Yu,et al.  Enhanced Photocalytic Activity of Hollow Anatase Microspheres by Sn4+ Incorporation , 2008 .

[7]  R. Caruso,et al.  Gold Nanoparticle Incorporation into Porous Titania Networks Using an Agarose Gel Templating Technique for Photocatalytic Applications , 2008 .

[8]  G. Pacchioni,et al.  N-doped TiO2: Theory and experiment , 2007 .

[9]  C. Sanchez,et al.  Nanostructured Titanium Oxynitride Porous Thin Films as Efficient Visible‐Active Photocatalysts , 2007 .

[10]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[11]  Yingjun Liu,et al.  Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide , 2005 .

[12]  Can Li,et al.  Importance of the relationship between surface phases and photocatalytic activity of TiO2. , 2008, Angewandte Chemie.

[13]  K. Domen,et al.  Photocatalyst releasing hydrogen from water , 2006, Nature.

[14]  J. S. Lees,et al.  A structural investigation of titanium dioxide photocatalysts , 1991 .

[15]  Jun Chen,et al.  UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. , 2006, The journal of physical chemistry. B.

[16]  J. Nowotny,et al.  TiO2 surface active sites for water splitting. , 2006, The journal of physical chemistry. B.

[17]  D. Meissner,et al.  Visible-light detoxification and charge generation by transition metal chloride modified titania. , 2000, Chemistry.

[18]  Didier Robert,et al.  Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant , 2004 .

[19]  C. Gout,et al.  Electronic band structure of titanium dioxide , 1977 .

[20]  Sean C. Smith,et al.  Band-to-Band Visible-Light Photon Excitation and Photoactivity Induced by Homogeneous Nitrogen Doping in Layered Titanates , 2009 .

[21]  T. Tachikawa,et al.  Mechanistic Insight into the TiO2 Photocatalytic Reactions: Design of New Photocatalysts , 2007 .

[22]  S. Ida,et al.  Photodeposition of Metal and Metal Oxide at the TiOx Nanosheet to Observe the Photocatalytic Active Site , 2008 .

[23]  Yutaka Murakami,et al.  Defects in Anatase TiO2 Single Crystal Controlled by Heat Treatments , 2004 .

[24]  M. Anpo,et al.  Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. , 2006, The journal of physical chemistry. B.

[25]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[26]  K. Tennakone,et al.  Water photoreduction with Cu2O quantum dots on TiO2 nano-particles , 2005 .

[27]  H. Arakawa,et al.  Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system , 1997 .

[28]  Can Li,et al.  Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as Cocatalyst under visible light irradiation. , 2008, Journal of the American Chemical Society.

[29]  Jinglin Xie,et al.  State of Doped Phosphorus and Its Influence on the Physicochemical and Photocatalytic Properties of P-doped Titania , 2008 .

[30]  H. Kisch,et al.  Photosensitization of crystalline and amorphous titanium dioxide by platinum(IV) chloride surface complexes. , 2001, Chemistry.

[31]  G. Pacchioni,et al.  Theory of Carbon Doping of Titanium Dioxide , 2005 .

[32]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[33]  Mamoru Watanabe,et al.  Preparation and characterizations of Fe- or Ni-substituted titania nanosheets as photocatalysts , 2002 .

[34]  P. Albouy,et al.  Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides , 2004, Nature materials.

[35]  Annabella Selloni,et al.  Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. , 2005, The journal of physical chemistry. B.

[36]  F. Saito,et al.  Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine , 2003 .

[37]  D. C. Cronemeyer Electrical and Optical Properties of Rutile Single Crystals , 1952 .

[38]  Annabella Selloni,et al.  Structure and Energetics of Water Adsorbed at TiO2 Anatase (101) and (001) Surfaces , 1998 .

[39]  Sean C. Smith,et al.  Efficient Promotion of Anatase TiO2 Photocatalysis via Bifunctional Surface-Terminating Ti−O−B−N Structures , 2009 .

[40]  Hyunwoong Park,et al.  Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production , 2008 .

[41]  James L. Gole,et al.  Defect‐Related Optical Behavior in Surface Modified TiO2 Nanostructures , 2005 .

[42]  Chenghua Sun,et al.  Nitrogen-doped titania nanosheets towards visible light response. , 2009, Chemical communications.

[43]  Galo J. A. A. Soler-Illia,et al.  Optimised photocatalytic activity of grid-like mesoporous TiO2 films: effect of crystallinity, pore size distribution, and pore accessibility , 2006 .

[44]  K. Rajeshwar,et al.  Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation. , 2009, Chemical Society reviews.

[45]  Chuncheng Chen,et al.  Efficient degradation of toxic organic pollutants with Ni2O3/TiO(2-x)Bx under visible irradiation. , 2004, Journal of the American Chemical Society.

[46]  K. Domen,et al.  A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I− shuttle redox mediator , 2001 .

[47]  P. Ordejón,et al.  Designed Self‐Doped Titanium Oxide Thin Films for Efficient Visible‐Light Photocatalysis , 2002 .

[48]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[49]  M. Antonietti,et al.  Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. , 2009, Journal of the American Chemical Society.

[50]  A. Ghosh,et al.  Photoelectronic Processes in Rutile , 1969 .

[51]  Hui-Ming Cheng,et al.  The role of crystal phase in determining photocatalytic activity of nitrogen doped TiO2. , 2009, Journal of colloid and interface science.

[52]  Jinlong Zhang,et al.  Preparation of controllable crystalline titania and study on the photocatalytic properties. , 2005, The journal of physical chemistry. B.

[53]  Vyacheslav N. Kuznetsov,et al.  On the Origin of the Spectral Bands in the Visible Absorption Spectra of Visible-Light-Active TiO2 Specimens Analysis and Assignments , 2009 .

[54]  J. Nowotny,et al.  Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts† , 2008 .

[55]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[56]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[57]  Zhigang Chen,et al.  Synthesis and Photoelectrochemical Behavior of Nitrogen-doped NaTaO3 , 2009 .

[58]  F. J. Knorr,et al.  Influence of TiCl4 treatment on surface defect photoluminescence in pure and mixed-phase nanocrystalline TiO2. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[59]  R. M. Lambert,et al.  Effective visible light-activated B-doped and B,N-codoped TiO2 photocatalysts. , 2007, Journal of the American Chemical Society.

[60]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[61]  Abdul Halim Abdullah,et al.  Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide : A review of fundamentals, progress and problems , 2008 .

[62]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[63]  Zhigang Chen,et al.  Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. , 2009, Chemical communications.

[64]  Tijana Rajh,et al.  Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. , 2005, The journal of physical chemistry. B.

[65]  Yuka Watanabe,et al.  Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders , 2003 .

[66]  Li Lin,et al.  Phosphor-doped Titania —a Novel Photocatalyst Active in Visible Light , 2005 .

[67]  A. Varma,et al.  An in situ diffuse reflectance FTIR investigation of photocatalytic degradation of 4-chlorophenol on a TiO2 powder surface , 1993 .

[68]  W. Ho,et al.  Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity , 2006 .

[69]  H. Zeng,et al.  Hollowing Sn-doped TiO2 nanospheres via ostwald ripening. , 2007, Journal of the American Chemical Society.

[70]  K. Domen,et al.  Porous Single-Crystalline TaON and Ta3N5 Particles , 2004 .

[71]  Mamoru Watanabe,et al.  Macromolecule-like Aspects for a Colloidal Suspension of an Exfoliated Titanate. Pairwise Association of Nanosheets and Dynamic Reassembling Process Initiated from It , 1996 .

[72]  T. Akita,et al.  Au nanoparticle electrocatalysis in a photoelectrochemical solar cell using CdS quantum dot-sensitized TiO2 photoelectrodes. , 2009, Chemical communications.

[73]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[74]  G. Pacchioni,et al.  Origin of the different photoactivity of N-doped anatase and rutile TiO2 , 2004 .

[75]  Hajime Haneda,et al.  Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies , 2005 .

[76]  Younan Xia,et al.  Fabrication of Titania Nanofibers by Electrospinning , 2003 .

[77]  Xue-qing Gong,et al.  Reactivity of anatase TiO(2) nanoparticles: the role of the minority (001) surface. , 2005, The journal of physical chemistry. B.

[78]  Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. , 2006, The journal of physical chemistry. B.

[79]  Shaomin Liu,et al.  SYNTHESIS OF SINGLE-CRYSTALLINE TIO2 NANOTUBES , 2002 .

[80]  M. Anpo,et al.  THE PREPARATION AND CHARACTERIZATION OF HIGHLY EFFICIENT TITANIUM OXIDE-BASED PHOTOFUNCTIONAL MATERIALS , 2005 .

[81]  Ulrike Diebold,et al.  Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. , 2006, Physical review letters.

[82]  Kazunori Takada,et al.  Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. , 2004, Journal of the American Chemical Society.

[83]  Prashant V. Kamat,et al.  Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures , 2009 .

[84]  Andrei Ghicov,et al.  Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. , 2009, Chemical communications.

[85]  John T Yates,et al.  Surface science studies of the photoactivation of TiO2--new photochemical processes. , 2006, Chemical reviews.

[86]  K. Domen,et al.  Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light (λ<500 nm) , 2008 .

[87]  A. Kudo,et al.  Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation , 2004 .

[88]  T. Tachikawa,et al.  Iodine-Doped TiO2 Photocatalysts: Correlation between Band Structure and Mechanism , 2008 .

[89]  Zhigang Chen,et al.  Drastically enhanced photocatalytic activity in nitrogen doped mesoporous TiO2 with abundant surface states. , 2009, Journal of Colloid and Interface Science.

[90]  S. Rodrigues,et al.  Structural defects cause TiO2-based photocatalysts to be active in visible light. , 2004, Chemical communications.

[91]  B. Ohtani,et al.  Photocatalytic activity of octahedral single-crystalline mesoparticles of anatase titanium(IV) oxide. , 2009, Chemical Communications.

[92]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[93]  D. Bavykin,et al.  Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications , 2006 .

[94]  Tsuyoshi Takata,et al.  Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I- shuttle redox mediator. , 2005, Chemical communications.

[95]  Fuqiang Huang,et al.  Structure-dependent photocatalytic activities of MWO4 (M = Ca, Sr, Ba) , 2009 .

[96]  Tsuyoshi Takata,et al.  Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO3-/I- shuttle redox mediator , 2008 .

[97]  Horst Kisch,et al.  The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. , 2008, Angewandte Chemie.

[98]  G. Pacchioni,et al.  Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. , 2006, Journal of the American Chemical Society.

[99]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[100]  Jungkweon Choi,et al.  Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. , 2006, Chemical communications.

[101]  Gao,et al.  Structure determination of the two-domain ( 1x4) anatase TiO2(001) surface , 2000, Physical review letters.

[102]  M. Antonietti,et al.  Metal‐Containing Carbon Nitride Compounds: A New Functional Organic–Metal Hybrid Material , 2009 .

[103]  Kimberly A. Gray,et al.  Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR , 2003 .

[104]  Jiaguo Yu,et al.  Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders , 2002 .

[105]  B. Ohtani,et al.  Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. , 2008, Journal of the American Chemical Society.

[106]  S. Ida,et al.  N doping of oxide nanosheets. , 2009, Journal of the American Chemical Society.

[107]  Koji Takeuchi,et al.  Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal , 2000 .

[108]  P. Kamat PHOTOCHEMISTRY ON NONREACTIVE AND REACTIVE (SEMICONDUCTOR) SURFACES , 1993 .

[109]  Zhigang Chen,et al.  Visible light photocatalyst: iodine-doped mesoporous titania with a bicrystalline framework. , 2006, The journal of physical chemistry. B.

[110]  Sean C. Smith,et al.  Iodine doped anatase TiO2 photocatalyst with ultra-long visible light response: correlation between geometric/electronic structures and mechanisms , 2009 .

[111]  Nick Serpone,et al.  Is the band gap of pristine TiO(2) narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? , 2006, The journal of physical chemistry. B.

[112]  Claire M. Cobley,et al.  Synthesis of anatase TiO2 nanocrystals with exposed {001} facets. , 2009, Nano letters.

[113]  Baibiao Huang,et al.  Theoretical study of N-doped TiO2 rutile crystals. , 2006, The journal of physical chemistry. B.

[114]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[115]  P. Liska,et al.  A swift dye uptake procedure for dye sensitized solar cells. , 2003, Chemical communications.

[116]  J. Rodríguez,et al.  N Doping of Rutile TiO2 (110) Surface. A Theoretical DFT Study , 2008 .

[117]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[118]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[119]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[120]  Z. Li,et al.  Multivalency iodine doped TiO2: preparation, characterization, theoretical studies, and visible-light photocatalysis. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[121]  M. Trari,et al.  Improvement of eosin visible light degradation using PbS-sensititized TiO2 , 2008 .

[122]  Zhigang Chen,et al.  Synthesis of rutile–anatase core–shell structured TiO2 for photocatalysis , 2009 .

[123]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[124]  Akira Nambu,et al.  Au <--> N synergy and N-doping of metal oxide-based photocatalysts. , 2008, Journal of the American Chemical Society.

[125]  Keisuke Asai,et al.  Band gap narrowing of titanium dioxide by sulfur doping , 2002 .

[126]  I. Lauermann,et al.  Influence of oxygen and water related surface defects on the dye sensitized TiO2 solar cell , 1999 .

[127]  Zhaoxiong Xie,et al.  Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. , 2009, Journal of the American Chemical Society.

[128]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[129]  T Ihara,et al.  Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping , 2003 .

[130]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[131]  Arthur J. Frank,et al.  Effect of the Surface-State Distribution on Electron Transport in Dye-Sensitized TiO2 Solar Cells: Nonlinear Electron-Transport Kinetics , 2000 .

[132]  M. Han,et al.  Aminolysis route to monodisperse titania nanorods with tunable aspect ratio. , 2005, Angewandte Chemie.

[133]  Y. Mizutani,et al.  Photoinduced Dynamics of TiO2 Doped with Cr and Sb , 2008 .

[134]  D. C. Cronemeyer Infrared Absorption of Reduced Rutile Ti O 2 Single Crystals , 1959 .

[135]  Jinhua Ye,et al.  Photocatalytic Water Splitting with the Cr-Doped Ba2In2O5/In2O3 Composite Oxide Semiconductors , 2005 .

[136]  M. Anpo,et al.  The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation , 2003 .

[137]  G. Lu,et al.  Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. , 2009, Journal of the American Chemical Society.

[138]  G. Pacchioni,et al.  Density Functional Theory and Electron Paramagnetic Resonance Study on the Effect of N−F Codoping of TiO2 , 2008 .

[139]  P. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion , 2007 .

[140]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[141]  M. Antonietti,et al.  Titania and Mixed Titania/Aluminum, Gallium, or Indium Oxide Spheres: Sol–Gel/Template Synthesis and Photocatalytic Properties , 2005 .

[142]  Vincenzo Grillo,et al.  Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals. , 2008, Journal of the American Chemical Society.

[143]  L. Qi,et al.  Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles , 1995 .

[144]  A. Henglein,et al.  Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles , 1987 .

[145]  Sean C. Smith,et al.  Solvothermal synthesis and photoreactivity of anatase TiO(2) nanosheets with dominant {001} facets. , 2009, Journal of the American Chemical Society.

[146]  Chenghua Sun,et al.  Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. , 2008, Angewandte Chemie.

[147]  U. Diebold,et al.  Surface studies of nitrogen implanted TiO2 , 2007 .

[148]  Tomoki Akita,et al.  All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system , 2006, Nature materials.

[149]  Hironori Arakawa,et al.  A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis , 2002 .

[150]  Frank E. Osterloh,et al.  Inorganic Materials as Catalysts for Photochemical Splitting of Water , 2008 .

[151]  Tsuyoshi Takata,et al.  Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine , 2004 .

[152]  M. Yoon,et al.  Synthesis of Liposome-Templated Titania Nanodisks: Optical Properties and Photocatalytic Activities , 2005 .

[153]  J. Gole,et al.  Enhanced Nitrogen Doping in TiO2 Nanoparticles , 2003 .

[154]  Qing Chen,et al.  CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. , 2008, Journal of the American Chemical Society.