Blue noise sampling using an SPH-based method

We propose a novel algorithm for blue noise sampling inspired by the Smoothed Particle Hydrodynamics (SPH) method. SPH is a well-known method in fluid simulation -- it computes particle distributions to minimize the internal pressure variance. We found that this results in sample points (i.e., particles) with a high quality blue-noise spectrum. Inspired by this, we tailor the SPH method for blue noise sampling. Our method achieves fast sampling in general dimensions for both surfaces and volumes. By varying a single parameter our method can generate a variety of blue noise samples with different distribution properties, ranging from Lloyd's relaxation to Capacity Constrained Voronoi Tessellations (CCVT). Our method is fast and supports adaptive sampling and multi-class sampling. We have also performed experimental studies of the SPH kernel and its influence on the distribution properties of samples. We demonstrate with examples that our method can generate a variety of controllable blue noise sample patterns, suitable for applications such as image stippling and re-meshing.

[1]  Mathieu Desbrun,et al.  Power particles , 2015, ACM Trans. Graph..

[2]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[3]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[4]  Li-Yi Wei Parallel Poisson disk sampling , 2008, SIGGRAPH 2008.

[5]  Robert Ulichney,et al.  Digital Halftoning , 1987 .

[6]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[7]  Ligang Liu,et al.  Capacity-Constrained Delaunay Triangulation for point distributions , 2011, Comput. Graph..

[8]  Oliver Deussen,et al.  Blue noise sampling with controlled aliasing , 2013, TOGS.

[9]  Li-yi Wei,et al.  Differential domain analysis for non-uniform sampling , 2011, SIGGRAPH 2011.

[10]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[11]  Robert Bridson,et al.  Ghost SPH for animating water , 2012, ACM Trans. Graph..

[12]  Jan Kautz,et al.  Fourier analysis of stochastic sampling strategies for assessing bias and variance in integration , 2013, ACM Trans. Graph..

[13]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[14]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[15]  Raanan Fattal Blue-noise point sampling using kernel density model , 2011, SIGGRAPH 2011.

[16]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, SIGGRAPH 2007.

[17]  Xiaohong Jia,et al.  Efficient maximal Poisson-disk sampling and remeshing on surfaces , 2015, Comput. Graph..

[18]  Qiang Du,et al.  Acceleration schemes for computing centroidal Voronoi tessellations , 2006, Numer. Linear Algebra Appl..

[19]  Michael Balzer,et al.  Capacity-constrained point distributions: a variant of Lloyd's method , 2009, ACM Trans. Graph..

[20]  Takahiro Harada,et al.  Real-time Coupling of Fluids and Rigid Bodies , 2007 .

[21]  Li-Yi Wei,et al.  Point sampling with general noise spectrum , 2012, ACM Trans. Graph..

[22]  Robert A. Dalrymple,et al.  SPH on GPU with CUDA , 2010 .

[23]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[24]  Ligang Liu,et al.  Blue noise sampling of surfaces , 2012, Comput. Graph..

[25]  Ligang Liu,et al.  Variational Blue Noise Sampling , 2012, IEEE Transactions on Visualization and Computer Graphics.

[26]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[27]  Eugene Fiume,et al.  Hierarchical Poisson disk sampling distributions , 1992 .

[28]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[29]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[30]  Gurprit Singh,et al.  Fast tile-based adaptive sampling with user-specified Fourier spectra , 2014, ACM Trans. Graph..

[31]  Don P. Mitchell,et al.  Generating antialiased images at low sampling densities , 1987, SIGGRAPH.

[32]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[33]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[34]  Markus Gross,et al.  Analysis and synthesis of point distributions based on pair correlation , 2012, ACM Trans. Graph..

[35]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[36]  Li-yi Wei Multi-class blue noise sampling , 2010 .

[37]  Nikolaus A. Adams,et al.  A transport-velocity formulation for smoothed particle hydrodynamics , 2013, J. Comput. Phys..

[38]  Jan P. Allebach,et al.  Digital halftoning , 2003 .

[39]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[40]  Li-Yi Wei,et al.  Parallel Poisson disk sampling , 2008, ACM Trans. Graph..

[41]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[42]  Huamin Wang,et al.  Bilateral blue noise sampling , 2013, ACM Trans. Graph..

[43]  Matthias Teschner,et al.  Versatile surface tension and adhesion for SPH fluids , 2013, ACM Trans. Graph..

[44]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[45]  Chi-Wing Fu,et al.  Fast capacity constrained Voronoi tessellation , 2010, I3D '10.

[46]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..

[47]  Li-Yi Wei,et al.  Parallel Poisson disk sampling with spectrum analysis on surfaces , 2010, ACM Trans. Graph..

[48]  Li-Yi Wei Multi-class blue noise sampling , 2010, SIGGRAPH 2010.

[49]  M. Yvinec,et al.  Variational tetrahedral meshing , 2005, SIGGRAPH 2005.

[50]  Mathieu Desbrun,et al.  Blue noise through optimal transport , 2012, ACM Trans. Graph..