Unified study of glass and jamming rheology in soft particle systems.
暂无分享,去创建一个
We explore numerically the shear rheology of soft repulsive particles at large volume fraction. The interplay between viscous dissipation and thermal motion results in multiple rheological regimes encompassing Newtonian, shear-thinning, and yield stress regimes near the "colloidal" glass transition when thermal fluctuations are important, crossing over to qualitatively similar regimes near the "jamming" transition when dissipation dominates. In the crossover regime, glass and jamming sectors coexist and give complex flow curves. Although glass and jamming limits are characterized by similar macroscopic flow curves, we show that they occur over distinct time and stress scales and correspond to distinct microscopic dynamics. We propose a simple rheological model describing the glass-to-jamming crossover in the flow curves, and discuss the experimental implications of our results.
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] J. Banavar,et al. Computer Simulation of Liquids , 1988 .
[3] James S. Langer,et al. Annual review of condensed matter physics , 2010 .
[4] R. Larson. The Structure and Rheology of Complex Fluids , 1998 .