Cost translation and a lifting approach to the multirate LQG problem

It is shown how to translate an instance of a multirate sampled-data LQG problem into an equivalent, modified, single-rate, shift-invariant problem via a lifting isomorphism approach. Using this approach, one can solve the multirate LQG problem without using periodic system theory or solving periodic Riccati equations and without suffering any increases in state dimension. This translation procedure shows the correct way to translate RMS noise specification to the lifted domain for a multirate Q-design computer-aided-design package. >

[1]  Douglas P. Glasson A New Technique for Multirate Digital Control Design and Sample Rate Selection , 1982 .

[2]  Tongwen Chen,et al.  Linear time-varying H2-optimal control of sampled-data systems , 1991, Autom..

[3]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[4]  Patrizio Colaneri,et al.  Stabilization of multirate sampled-data linear systems , 1990, Autom..

[5]  Patrizio Colaneri,et al.  The LQG problem for multirate sampled-data systems , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[6]  K. Poolla,et al.  Robust control of linear time-invariant plants using periodic compensation , 1985 .

[7]  Semyon M. Meerkov,et al.  Vibrational control of nonlinear systems: Vibrational stabilizability , 1986 .

[8]  A. Laub,et al.  Generalized eigenproblem algorithms and software for algebraic Riccati equations , 1984, Proceedings of the IEEE.

[9]  Jack Sklansky,et al.  Analysis of errors in sampled-data feedback systems , 1955, Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry.

[10]  G. Kranc,et al.  Input-output analysis of multirate feedback systems , 1957 .

[11]  F. J. Mullin,et al.  The analysis of sampled-data control systems with a periodically time-varying sampling rate , 1959, IRE Transactions on Automatic Control.

[12]  T. Runolfsson,et al.  Vibrational feedback control: Zeros placement capabilities , 1987 .

[13]  Gene F. Franklin,et al.  A new optimal multirate control of linear periodic and time-invariant systems , 1990 .

[14]  D. Meyer A new class of shift-varying operators, their shift-invariant equivalents, and multirate digital systems , 1990 .

[15]  G. Franklin,et al.  Linear periodic systems: eigenvalue assignment using discrete periodic feedback , 1989 .

[16]  Tryphon T. Georgiou,et al.  On the robust stabilizability of uncertain linear time-invariant plants using nonlinear time-varying controllers , 1987, Autom..

[17]  Stephen Boyd,et al.  A new CAD method and associated architectures for linear controllers , 1988 .

[18]  J. D. Powell,et al.  Optimal digital control of multirate systems , 1981 .

[19]  R. Kálmán,et al.  A unified approach to the theory of sampling systems , 1959 .

[20]  Martin C. Berg,et al.  Multirate digital control system design , 1988 .

[21]  M. Araki,et al.  Multivariable multirate sampled-data systems: State-space description, transfer characteristics, and Nyquist criterion , 1986 .

[22]  Albert B. Chammas,et al.  Pole assignment by piecewise constant output feedback , 1979 .

[23]  B. Francis,et al.  Stability Theory for Linear Time-Invariant Plants with Periodic Digital Controllers , 1988, 1988 American Control Conference.