Matrix transformations for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue problems
暂无分享,去创建一个
[1] K. Hensel. Journal für die reine und angewandte Mathematik , 1892 .
[2] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[3] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[4] J. Gary. On certain finite difference schemes for hyperbolic systems , 1964 .
[5] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[6] Richard A. Silverman,et al. Introductory Complex Analysis , 1968 .
[7] E. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .
[8] G. Stewart. Simultaneous iteration for computing invariant subspaces of non-Hermitian matrices , 1976 .
[9] G. Stewart,et al. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .
[10] C. Loan,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .
[11] Y. Saad. Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .
[12] Axel Ruhe,et al. The spectral transformation Lánczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems , 1980 .
[13] William J. Stewart,et al. A Simultaneous Iteration Algorithm for Real Matrices , 1981, TOMS.
[14] D. Malkus. Eigenproblems associated with the discrete LBB condition for incompressible finite elements , 1981 .
[15] William J. Stewart,et al. Algorithm 570: LOPSI: A Simultaneous Iteration Method for Real Matrices [F2] , 1981, TOMS.
[16] R. F. Heinemann,et al. Multiplicity, stability, and oscillatory dynamics of the tubular reactor , 1981 .
[17] D. Scott. Solving Sparse Symmetric Generalized Eigenvalue Problems without Factorization , 1981 .
[18] D. Scott. The Advantages of Inverted Operators in Rayleigh–Ritz Approximations , 1982 .
[19] Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation , 1984 .
[20] Y. Saad,et al. Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems , 1984 .
[21] Arthur Rizzi,et al. Computer-aided analysis of the convergence to steady state of discrete approximations to the euler equations , 1985 .
[22] K. H Winters,et al. Convergence properties of the finite-element method for Bénard Convection in an infinite layer , 1985 .
[23] Zhishun A. Liu,et al. A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .
[24] William L. Kath,et al. Bifurcation with memory , 1986 .
[25] T. Ericsson. A Generalised Eigenvalue Problem and The Lanczos Algorithm , 1986 .
[26] R. Morgan,et al. Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices , 1986 .
[27] Horst D. Simon,et al. Eigenvalue Problems and Algorithms in Structural Engineering , 1986 .
[28] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[29] Y. Saad,et al. Complex shift and invert strategies for real matrices , 1987 .
[30] S. Orszag,et al. An efficient method for computing leading eigenvalues and eigenvectors of large asymmetric matrices , 1987 .
[31] Y. Saad. Least squares polynomials in the complex plane and their use for solving nonsymmetric linear systems , 1987 .
[32] B. Parlett,et al. How to implement the spectral transformation , 1987 .
[33] L. E. Scriven,et al. Finding leading modes of a viscous free surface flow: An asymmetric generalized eigenproblem , 1988, J. Sci. Comput..
[34] Anthony T. Chronopoulos. s-Step Iterative Methods for (Non) Symmetric (In) Definite Linear Systems , 1989, PPSC.
[35] Diem Ho. Tchebychev acceleration technique for large scale nonsymmetric matrices , 1989 .
[36] J. Cullum,et al. A generalized nonsymmetric Lanczos procedure , 1989 .
[37] Y. Saad,et al. Numerical solution of large nonsymmetric eigenvalue problems , 1989 .
[38] Diem Ho,et al. Arnoldi-Tchebychev procedure for large scale nonsymmetric matrices , 1990 .
[39] Youcef Saad,et al. A Basic Tool Kit for Sparse Matrix Computations , 1990 .
[40] A. Spence,et al. Two Methods for the Numerical Detection of Hopf Bifurcations , 1991 .
[41] David W. Lewis,et al. Matrix theory , 1991 .
[42] G. Paul Neitzel,et al. A Large, Sparse, and Indefinite Generalized Eigenvalue Problem from Fluid Mechanics , 1992, SIAM J. Sci. Comput..
[43] A. T. Galick,et al. Iterative solution of the eigenvalue problem for a dielectric waveguide , 1992 .
[44] Martin H. Gutknecht,et al. A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms, Part I , 1992, SIAM J. Matrix Anal. Appl..
[45] R. Morgan. Generalizations of davidson's method for computing eigenvalues of large nonsymmetric matrices , 1992 .
[46] R. Natarajan. An Arnoldi-based iterative scheme for nonsymmetric matrix pencils arising in finite element stability problems , 1992 .
[47] Danny C. Sorensen,et al. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..
[49] Yousef Saad,et al. Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..
[50] K. Fiedler,et al. Patterns and Waves — The theory and applications of reaction — diffusion equations , 1992 .
[51] Ronald B. Morgan,et al. Preconditioning the Lanczos Algorithm for Sparse Symmetric Eigenvalue Problems , 1993, SIAM J. Sci. Comput..
[52] Computing selected eigenvalues of sparse unsymmetric matrices using subspace iteration , 1993, TOMS.
[53] Anthony T. Chronopoulos,et al. Vectorial integrated finite-difference analysis of dielectric waveguides , 1993 .
[54] J. K. Reid,et al. MA48: A FORTRAN code for direct solution of sparse unsymmetric linear systems of equations , 1993 .
[55] K. A. Cliffe,et al. Eigenvalues of the discretized Navier-Stokes equation with application to the detection of Hopf bifurcations , 1993, Adv. Comput. Math..
[56] D. Sorensen,et al. A lanczos‐based technique for exact vibration analysis of skeletal structures , 1993 .
[57] M. Sadkane. Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue problems , 1993 .
[58] M. Sadkane. A block Arnoldi-Chebyshev method for computing the leading eigenpairs of large sparse unsymmetric matrices , 1993 .
[59] R. Neubert,et al. PREDICTOR-CORRECTOR TECHNIQUES FOR DETECTING HOPF BIFURCATION POINTS , 1993 .
[60] A. T. Galick,et al. Efficient Solution of Large Sparse Eigenvalue Problems in Microelectronic Simulation , 1993 .
[61] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[62] David S. Watkins,et al. Some Perspectives on the Eigenvalue Problem , 1993, SIAM Rev..
[63] Alastair Spence,et al. A GENERALISED CAYLEY TRANSFORM FOR THE NUMERICAL DETECTION OF HOPF BIFURCATIONS IN LARGE SYSTEMS , 1993 .
[64] Thierry BraconnieryCERFACS. Stopping Criteria for Eigensolvers , 1994 .
[65] Axel Ruhe. Rational Krylov algorithms for nonsymmetric eigenvalue problems. II. matrix pairs , 1994 .
[66] A. Spence,et al. Eigenvalues of Block Matrices Arising from Problems in Fluid Mechanics , 1994, SIAM J. Matrix Anal. Appl..
[67] J. G. Lewis,et al. A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..
[68] M. R. Abdel-Aziz. Safeguarded use of the implicit restarted lanczos technique for solving non‐linear structural eigensystems , 1994 .
[69] D. Calvetti,et al. AN IMPLICITLY RESTARTED LANCZOS METHOD FOR LARGE SYMMETRIC EIGENVALUE PROBLEMS , 1994 .
[70] Bernard Philippe,et al. The Davidson Method , 1994, SIAM J. Sci. Comput..
[71] Hans D. Mittelmann,et al. Iterative Solution of the Eigenvalue Problem in Hopf Bifurcation for the Boussinesq Equations , 1994, SIAM J. Sci. Comput..
[72] A. Spence,et al. Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices , 1994 .
[73] Axel Ruhe. The rational Krylov algorithm for nonsymmetric eigenvalue problems. III: Complex shifts for real matrices , 1994 .
[74] M. Gutknecht. A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..
[75] Axel Ruhe. Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .
[76] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[77] H. V. D. Vorst,et al. Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .
[78] Jennifer A. Scott,et al. An Arnoldi code for computing selected eigenvalues of sparse, real, unsymmetric matrices , 1995, TOMS.
[79] H. V. D. Vorst,et al. Application of the Implicitly Updated Arnoldi Method with a Complex Shift-and-Invert Strategy in MHD , 1995 .
[80] Adam Semlyen,et al. Improved methodologies for the calculation of critical eigenvalues in small signal stability analysis , 1996 .
[81] J. A. ScottyJanuary. An Evaluation of Software for Computing Eigenvalues of Sparse Nonsymmetric Matrices , 1996 .
[82] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..
[83] Ronald B. Morgan,et al. On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..
[84] Finding eigenvalues to the right of a given line , 1996 .
[85] Karl Meerbergen,et al. Implicitly restarted Arnoldi with purification for the shift-invert transformation , 1997, Math. Comput..
[86] K. Meerbergen,et al. The Restarted Arnoldi Method Applied to Iterative Linear System Solvers for the Computation of Rightmost Eigenvalues , 1997 .
[87] G. W. Stewart,et al. SRRIT--A FORTRAN Subroutine to Calculate the Dominant InvariantSubspace of a Nonsymmetric Matrix , 1998 .
[88] Axel Ruhe,et al. Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..