Matrix transformations for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue problems

This paper gives an overview of matrix transformations for finding rightmost eigenvalues of Ax = λx and Ax = λBx with A and B real non-symmetric and B possibly singular. The aim is not to present new material. but to introduce the reader to the application of matrix transformations to the solution of large-scale eigenvalue problems. The paper explains and discusses the use of Chebyshev polynomials and the shift-invert and Cayley, transforms as matrix transformations for problems that arise from the discretization of partial differential equations. A few other techniques are described. The reliability of iterative methods is also dealt with by introducing the concept of domain of confidence or trust region. This overview gives the reader an idea of the benefits and the drawbacks of several transformation techniques. We also briefly discuss the current software situation.

[1]  K. Hensel Journal für die reine und angewandte Mathematik , 1892 .

[2]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[3]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[4]  J. Gary On certain finite difference schemes for hyperbolic systems , 1964 .

[5]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[6]  Richard A. Silverman,et al.  Introductory Complex Analysis , 1968 .

[7]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[8]  G. Stewart Simultaneous iteration for computing invariant subspaces of non-Hermitian matrices , 1976 .

[9]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .

[10]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[11]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[12]  Axel Ruhe,et al.  The spectral transformation Lánczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems , 1980 .

[13]  William J. Stewart,et al.  A Simultaneous Iteration Algorithm for Real Matrices , 1981, TOMS.

[14]  D. Malkus Eigenproblems associated with the discrete LBB condition for incompressible finite elements , 1981 .

[15]  William J. Stewart,et al.  Algorithm 570: LOPSI: A Simultaneous Iteration Method for Real Matrices [F2] , 1981, TOMS.

[16]  R. F. Heinemann,et al.  Multiplicity, stability, and oscillatory dynamics of the tubular reactor , 1981 .

[17]  D. Scott Solving Sparse Symmetric Generalized Eigenvalue Problems without Factorization , 1981 .

[18]  D. Scott The Advantages of Inverted Operators in Rayleigh–Ritz Approximations , 1982 .

[19]  Axel Ruhe Rational Krylov sequence methods for eigenvalue computation , 1984 .

[20]  Y. Saad,et al.  Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems , 1984 .

[21]  Arthur Rizzi,et al.  Computer-aided analysis of the convergence to steady state of discrete approximations to the euler equations , 1985 .

[22]  K. H Winters,et al.  Convergence properties of the finite-element method for Bénard Convection in an infinite layer , 1985 .

[23]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[24]  William L. Kath,et al.  Bifurcation with memory , 1986 .

[25]  T. Ericsson A Generalised Eigenvalue Problem and The Lanczos Algorithm , 1986 .

[26]  R. Morgan,et al.  Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices , 1986 .

[27]  Horst D. Simon,et al.  Eigenvalue Problems and Algorithms in Structural Engineering , 1986 .

[28]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[29]  Y. Saad,et al.  Complex shift and invert strategies for real matrices , 1987 .

[30]  S. Orszag,et al.  An efficient method for computing leading eigenvalues and eigenvectors of large asymmetric matrices , 1987 .

[31]  Y. Saad Least squares polynomials in the complex plane and their use for solving nonsymmetric linear systems , 1987 .

[32]  B. Parlett,et al.  How to implement the spectral transformation , 1987 .

[33]  L. E. Scriven,et al.  Finding leading modes of a viscous free surface flow: An asymmetric generalized eigenproblem , 1988, J. Sci. Comput..

[34]  Anthony T. Chronopoulos s-Step Iterative Methods for (Non) Symmetric (In) Definite Linear Systems , 1989, PPSC.

[35]  Diem Ho Tchebychev acceleration technique for large scale nonsymmetric matrices , 1989 .

[36]  J. Cullum,et al.  A generalized nonsymmetric Lanczos procedure , 1989 .

[37]  Y. Saad,et al.  Numerical solution of large nonsymmetric eigenvalue problems , 1989 .

[38]  Diem Ho,et al.  Arnoldi-Tchebychev procedure for large scale nonsymmetric matrices , 1990 .

[39]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .

[40]  A. Spence,et al.  Two Methods for the Numerical Detection of Hopf Bifurcations , 1991 .

[41]  David W. Lewis,et al.  Matrix theory , 1991 .

[42]  G. Paul Neitzel,et al.  A Large, Sparse, and Indefinite Generalized Eigenvalue Problem from Fluid Mechanics , 1992, SIAM J. Sci. Comput..

[43]  A. T. Galick,et al.  Iterative solution of the eigenvalue problem for a dielectric waveguide , 1992 .

[44]  Martin H. Gutknecht,et al.  A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms, Part I , 1992, SIAM J. Matrix Anal. Appl..

[45]  R. Morgan Generalizations of davidson's method for computing eigenvalues of large nonsymmetric matrices , 1992 .

[46]  R. Natarajan An Arnoldi-based iterative scheme for nonsymmetric matrix pencils arising in finite element stability problems , 1992 .

[47]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[49]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[50]  K. Fiedler,et al.  Patterns and Waves — The theory and applications of reaction — diffusion equations , 1992 .

[51]  Ronald B. Morgan,et al.  Preconditioning the Lanczos Algorithm for Sparse Symmetric Eigenvalue Problems , 1993, SIAM J. Sci. Comput..

[52]  Computing selected eigenvalues of sparse unsymmetric matrices using subspace iteration , 1993, TOMS.

[53]  Anthony T. Chronopoulos,et al.  Vectorial integrated finite-difference analysis of dielectric waveguides , 1993 .

[54]  J. K. Reid,et al.  MA48: A FORTRAN code for direct solution of sparse unsymmetric linear systems of equations , 1993 .

[55]  K. A. Cliffe,et al.  Eigenvalues of the discretized Navier-Stokes equation with application to the detection of Hopf bifurcations , 1993, Adv. Comput. Math..

[56]  D. Sorensen,et al.  A lanczos‐based technique for exact vibration analysis of skeletal structures , 1993 .

[57]  M. Sadkane Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue problems , 1993 .

[58]  M. Sadkane A block Arnoldi-Chebyshev method for computing the leading eigenpairs of large sparse unsymmetric matrices , 1993 .

[59]  R. Neubert,et al.  PREDICTOR-CORRECTOR TECHNIQUES FOR DETECTING HOPF BIFURCATION POINTS , 1993 .

[60]  A. T. Galick,et al.  Efficient Solution of Large Sparse Eigenvalue Problems in Microelectronic Simulation , 1993 .

[61]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..

[62]  David S. Watkins,et al.  Some Perspectives on the Eigenvalue Problem , 1993, SIAM Rev..

[63]  Alastair Spence,et al.  A GENERALISED CAYLEY TRANSFORM FOR THE NUMERICAL DETECTION OF HOPF BIFURCATIONS IN LARGE SYSTEMS , 1993 .

[64]  Thierry BraconnieryCERFACS Stopping Criteria for Eigensolvers , 1994 .

[65]  Axel Ruhe Rational Krylov algorithms for nonsymmetric eigenvalue problems. II. matrix pairs , 1994 .

[66]  A. Spence,et al.  Eigenvalues of Block Matrices Arising from Problems in Fluid Mechanics , 1994, SIAM J. Matrix Anal. Appl..

[67]  J. G. Lewis,et al.  A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..

[68]  M. R. Abdel-Aziz Safeguarded use of the implicit restarted lanczos technique for solving non‐linear structural eigensystems , 1994 .

[69]  D. Calvetti,et al.  AN IMPLICITLY RESTARTED LANCZOS METHOD FOR LARGE SYMMETRIC EIGENVALUE PROBLEMS , 1994 .

[70]  Bernard Philippe,et al.  The Davidson Method , 1994, SIAM J. Sci. Comput..

[71]  Hans D. Mittelmann,et al.  Iterative Solution of the Eigenvalue Problem in Hopf Bifurcation for the Boussinesq Equations , 1994, SIAM J. Sci. Comput..

[72]  A. Spence,et al.  Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices , 1994 .

[73]  Axel Ruhe The rational Krylov algorithm for nonsymmetric eigenvalue problems. III: Complex shifts for real matrices , 1994 .

[74]  M. Gutknecht A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..

[75]  Axel Ruhe Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .

[76]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[77]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[78]  Jennifer A. Scott,et al.  An Arnoldi code for computing selected eigenvalues of sparse, real, unsymmetric matrices , 1995, TOMS.

[79]  H. V. D. Vorst,et al.  Application of the Implicitly Updated Arnoldi Method with a Complex Shift-and-Invert Strategy in MHD , 1995 .

[80]  Adam Semlyen,et al.  Improved methodologies for the calculation of critical eigenvalues in small signal stability analysis , 1996 .

[81]  J. A. ScottyJanuary An Evaluation of Software for Computing Eigenvalues of Sparse Nonsymmetric Matrices , 1996 .

[82]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[83]  Ronald B. Morgan,et al.  On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..

[84]  Finding eigenvalues to the right of a given line , 1996 .

[85]  Karl Meerbergen,et al.  Implicitly restarted Arnoldi with purification for the shift-invert transformation , 1997, Math. Comput..

[86]  K. Meerbergen,et al.  The Restarted Arnoldi Method Applied to Iterative Linear System Solvers for the Computation of Rightmost Eigenvalues , 1997 .

[87]  G. W. Stewart,et al.  SRRIT--A FORTRAN Subroutine to Calculate the Dominant InvariantSubspace of a Nonsymmetric Matrix , 1998 .

[88]  Axel Ruhe,et al.  Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..