Genome-wide association study in frontal fibrosing alopecia identifies four susceptibility loci including HLA-B*07:02

Frontal fibrosing alopecia (FFA) is a recently described inflammatory and scarring type of hair loss affecting almost exclusively women. Despite a dramatic recent increase in incidence the aetiopathogenesis of FFA remains unknown. We undertake genome-wide association studies in females from a UK cohort, comprising 844 cases and 3,760 controls, a Spanish cohort of 172 cases and 385 controls, and perform statistical meta-analysis. We observe genome-wide significant association with FFA at four genomic loci: 2p22.2, 6p21.1, 8q24.22 and 15q2.1. Within the 6p21.1 locus, fine-mapping indicates that the association is driven by the HLA-B*07:02 allele. At 2p22.1, we implicate a putative causal missense variant in CYP1B1, encoding the homonymous xenobiotic- and hormone-processing enzyme. Transcriptomic analysis of affected scalp tissue highlights overrepresentation of transcripts encoding components of innate and adaptive immune response pathways. These findings provide insight into disease pathogenesis and characterise FFA as a genetically predisposed immuno-inflammatory disorder driven by HLA-B*07:02.Frontal fibrosing alopecia (FFA) features lichenoid cutaneous inflammation and scarring hair loss. Here, Tziotzios et al. identify four genetic loci associated with FFA by GWAS followed by Bayesian fine-mapping, co-localisation and HLA imputation which highlights HLA-B*07:02 as a risk factor.

Chrysanthi Ainali | Xavier Estivill | Alka Saxena | Carsten Flohr | Kapil Bhargava | Sang Hyuck Lee | Nick Dand | Emanuele de Rinaldis | Rodney Sinclair | Nigel Burrows | Fiona M Watt | T. Spector | X. Estivill | C. Flohr | C. Curtis | M. Simpson | F. Watt | J. McGrath | C. Ainali | S. Lee | A. Messenger | A. McDonagh | J. Saklatvala | N. Dand | N. Burrows | S. Holmes | J. Barker | G. Dunnill | S. Vañó-Galvan | V. Jolliffe | A. Saxena | R. Sinclair | Kristie Wood | F. Lewis | S. Seegobin | D. D. de Berker | D. Fenton | E. de Rinaldis | G. Michelotti | Catherine H. Smith | A. Onoufriadis | Christos Petridis | Alexandros Onoufriadis | Lu Liu | H. Cooper | Catherine H Smith | Matthew Harries | C. Petridis | P. Farrant | Michael A Simpson | M. Ardern-Jones | S. Wahie | M. Harries | A. Macbeth | C. Tziotzios | Timothy Spector | Gregory A Michelotti | C. Stefanato | John A McGrath | David de Berker | Jonathan N Barker | I. Palamaras | Rashida Pramanik | Seth Seegobin | Christos Tziotzios | Kristie Wood | Jake R Saklatvala | Ioulios Palamaras | Venu Pullabhatla | David Baudry | Lu Liu | Su M Lwin | Evangelos A A Christou | Charles J Curtis | Susan Holmes | Fiona Cunningham | Gregory Parkins | Manjit Kaur | Paul Farrant | Andrew McDonagh | Andrew Messenger | Jennifer Jones | Victoria Jolliffe | Iaisha Ali | Michael Ardern-Jones | Charles Mitchell | Ravinder Atkar | Cedric Banfield | Anton Alexandroff | Caroline Champagne | Hywel L Cooper | Sergio Vañó-Galván | Ana Maria Molina-Ruiz | Nerea Ormaechea Perez | Girish K Patel | Abby Macbeth | Melanie Page | Alyson Bryden | Megan Mowbray | Shyamal Wahie | Keith Armstrong | Nicola Cooke | Mark Goodfield | Irene Man | Giles Dunnill | Anita Takwale | Archana Rao | Tee-Wei Siah | Martin S Wade | Ncoza C Dlova | Jane Setterfield | Fiona Lewis | Niall Kirkpatrick | Catherine M Stefanato | David A Fenton | R. Pramanik | N. Dlova | A. Alexandroff | A. Takwale | I. Ali | J. Setterfield | A. Bryden | V. Pullabhatla | David Baudry | S. Lwin | E.A.A. Christou | F. Cunningham | G. Parkins | M. Kaur | J. Jones | C. Mitchell | R. Atkar | C. Banfield | C. Champagne | A. Molina-Ruiz | Nerea Ormaechea Pérez | G. K. Patel | M. Page | M. Mowbray | K. Armstrong | N. Cooke | M. Goodfield | I. Man | A. Rao | T. Siah | M. Wade | K. Bhargava | N. Kirkpatrick | S. Vañó-Galván | D. Baudry | G. Patel | Jennifer Jones | S. Lee | Girish K. Patel

[1]  M. Fukuda,et al.  Human T-lymphocyte activation is associated with changes in O-glycan biosynthesis. , 1988, The Journal of biological chemistry.

[2]  S. Kossard Postmenopausal frontal fibrosing alopecia. Scarring alopecia in a pattern distribution. , 1994, Archives of dermatology.

[3]  J. Marth,et al.  The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. , 2000, Immunity.

[4]  E. Cavalieri,et al.  Role of human cytochrome P450 1A1, 1A2, 1B1, and 3A4 in the 2-, 4-, and 16alpha-hydroxylation of 17beta-estradiol. , 2001, Metabolism: clinical and experimental.

[5]  A. Tomlinson,et al.  The shared tumor-associated antigen cytochrome P450 1B1 is recognized by specific cytotoxic T cells. , 2003, Blood.

[6]  A. Conney,et al.  Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. , 2003, Endocrinology.

[7]  Steven Henikoff,et al.  SIFT: predicting amino acid changes that affect protein function , 2003, Nucleic Acids Res..

[8]  R. Paus,et al.  The hair follicle and immune privilege. , 2003, The journal of investigative dermatology. Symposium proceedings.

[9]  Magnus Ingelman-Sundberg,et al.  Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms , 2004, Naunyn-Schmiedeberg's Archives of Pharmacology.

[10]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Weidlich,et al.  Proteasomal Degradation of Human CYP1B1: Effect of the Asn453Ser Polymorphism on the Post-Translational Regulation of CYP1B1 Expression , 2005, Molecular Pharmacology.

[12]  J. Marth,et al.  Structural and Mechanistic Features of Protein O Glycosylation Linked to CD8+ T-Cell Apoptosis , 2006, Molecular and Cellular Biology.

[13]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[14]  R. Paus,et al.  Evidence that the bulge region is a site of relative immune privilege in human hair follicles , 2008, The British journal of dermatology.

[15]  Jon Wakefield,et al.  Bayes factors for genome‐wide association studies: comparison with P‐values , 2009, Genetic epidemiology.

[16]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[17]  Anne M. Evans,et al.  Organization of GC/MS and LC/MS metabolomics data into chemical libraries , 2010, J. Cheminformatics.

[18]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[19]  P. Robinson,et al.  Whole-exome sequencing for finding de novo mutations in sporadic mental retardation , 2010, Genome Biology.

[20]  A. Tosti,et al.  Frontal fibrosing alopecia in two sisters , 2010, The British journal of dermatology.

[21]  S. Bashir,et al.  Expanding the spectrum of frontal fibrosing alopecia: a unifying concept. , 2010, Journal of the American Academy of Dermatology.

[22]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[23]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[24]  Jake K. Byrnes,et al.  Bayesian refinement of association signals for 14 loci in 3 common diseases , 2012, Nature Genetics.

[25]  Ahmed Enayetallah,et al.  Causal reasoning on biological networks: interpreting transcriptional changes , 2012, Bioinform..

[26]  A. Tosti,et al.  Familial frontal fibrosing alopecia , 2013, The British journal of dermatology.

[27]  Buhm Han,et al.  Imputing Amino Acid Polymorphisms in Human Leukocyte Antigens , 2013, PloS one.

[28]  R. Paus,et al.  Lichen planopilaris is characterized by immune privilege collapse of the hair follicle's epithelial stem cell niche , 2013, The Journal of pathology.

[29]  S. Bull,et al.  Human leukocyte antigen alleles and susceptibility to psoriatic arthritis. , 2013, Human immunology.

[30]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[31]  M. Schwab,et al.  Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. , 2013, Pharmacology & therapeutics.

[32]  D. Saluja,et al.  CYP1B1: a unique gene with unique characteristics. , 2015, Current drug metabolism.

[33]  John P. Overington,et al.  An atlas of genetic influences on human blood metabolites , 2014, Nature Genetics.

[34]  B. Walker,et al.  HIV subtype influences HLA-B*07:02-associated HIV disease outcome. , 2014, AIDS research and human retroviruses.

[35]  C. Wallace,et al.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics , 2013, PLoS genetics.

[36]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[37]  R. Grimalt,et al.  Frontal fibrosing alopecia: a multicenter review of 355 patients. , 2014, Journal of the American Academy of Dermatology.

[38]  J. Flynn,et al.  Absence of HLA-DR1 positivity in 2 familial cases of frontal fibrosing alopecia. , 2014, Journal of the American Academy of Dermatology.

[39]  M. Kurzer,et al.  Estrogen metabolism and breast cancer. , 2015, Cancer letters.

[40]  J. McGrath,et al.  Familial frontal fibrosing alopecia. , 2015, Journal of the American Academy of Dermatology.

[41]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[42]  M. O. Rivas,et al.  Frontal fibrosing alopecia and lichen planopilaris in HLA-identical mother and daughter. , 2015, Indian journal of dermatology, venereology and leprology.

[43]  A. Ramírez-Boscá,et al.  Case series of familial frontal fibrosing alopecia and a review of the literature , 2015, Journal of cosmetic dermatology.

[44]  J. McGrath,et al.  Frontal fibrosing alopecia: there is no statistically significant association with leave‐on facial skin care products and sunscreens , 2016, The British journal of dermatology.

[45]  A. Messenger,et al.  Frontal fibrosing alopecia: possible association with leave‐on facial skin care products and sunscreens; a questionnaire study , 2016, The British journal of dermatology.

[46]  A. Tosti,et al.  Frontal fibrosing alopecia treatment options. , 2016, Intractable & rare diseases research.

[47]  M. Simpson,et al.  Frontal fibrosing alopecia: reflections and hypotheses on aetiology and pathogenesis , 2016, Experimental dermatology.

[48]  D. Poirier,et al.  Inhibitors of cytochrome P450 (CYP) 1B1. , 2017, European journal of medicinal chemistry.

[49]  M. Triggiani,et al.  Cytochrome P450s in human immune cells regulate IL-22 and c-Kit via an AHR feedback loop , 2017, Scientific Reports.

[50]  M. Camilleri,et al.  Frontal fibrosing alopecia among men: A clinicopathologic study of 7 cases , 2017, Journal of the American Academy of Dermatology.

[51]  Jonathan W. Nelson,et al.  The START App: a web‐based RNAseq analysis and visualization resource , 2016, Bioinform..

[52]  F. Gonzalez,et al.  Potential role of CYP1B1 in the development and treatment of metabolic diseases , 2017, Pharmacology & therapeutics.

[53]  A. Christiano,et al.  Tofacitinib for the treatment of lichen planopilaris: A case series , 2018, Dermatologic therapy.

[54]  R. Pujol,et al.  Frontal fibrosing alopecia after antiandrogen hormonal therapy in a male patient , 2018, Journal of the European Academy of Dermatology and Venereology : JEADV.

[55]  David S. Wishart,et al.  MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis , 2018, Nucleic Acids Res..

[56]  A. Christiano,et al.  JAK Inhibitors for Treatment of Alopecia Areata. , 2018, The Journal of investigative dermatology.

[57]  S. Vañó-Galvan,et al.  Updated diagnostic criteria for frontal fibrosing alopecia. , 2018, Journal of the American Academy of Dermatology.