An improved evolution strategy with adaptive population size

A simple, yet efficient scheme for adaptation of population size in evolution strategies (ESs) that utilize global intermediate/weighted recombination is presented. At the first step, a measure to quantify multimodality of the region under exploration is introduced. This quantity is iteratively updated based on the optimization history and subsequently utilized to enlarge the population size when facing highly multimodal regions and vice versa. A descriptive experiment is designed to gain insight through impact of the novel heuristic. The heuristic is incorporated into the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), the state of the art evolution strategy, and the reinforced algorithm is compared to the basic CMA-ES with fixed population size on a large number of test problems. Result comparison reveals the heuristic fulfills both goals of an effective adaptation scheme: It reduces performance sensitivity to the control parameter and increases convergence efficiency at the same time.

[1]  Heinz Mühlenbein,et al.  Strategy Adaption by Competing Subpopulations , 1994, PPSN.

[2]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[3]  Dirk Schlierkamp Voosen Strategy Adaptation by Competing Subpopulations , 1994 .

[4]  Carmine Pappalettere,et al.  Metaheuristic Design Optimization of Skeletal Structures: A Review , 2010 .

[5]  Heinz Mühlenbein,et al.  Adaptation of population sizes by competing subpopulations , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[6]  Fernando G. Lobo,et al.  A parameter-less genetic algorithm , 1999, GECCO.

[7]  Cláudio F. Lima,et al.  A review of adaptive population sizing schemes in genetic algorithms , 2005, GECCO '05.

[8]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[9]  Xuefeng Yan,et al.  A self-adaptive differential evolution algorithm based on ant system with application to estimate kinetic parameters , 2012 .

[10]  D. Pham,et al.  THE BEES ALGORITHM, A NOVEL TOOL FOR COMPLEX OPTIMISATION PROBLEMS , 2006 .

[11]  L. Darrell Whitley,et al.  Evaluating Evolutionary Algorithms , 1996, Artif. Intell..

[12]  Thomas Bäck,et al.  An Empirical Study on GAs "Without Parameters" , 2000, PPSN.

[13]  Pedro Oliveira,et al.  An adaptive constraint handling technique for evolutionary algorithms , 2010 .

[14]  Zelda B. Zabinsky,et al.  A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..

[15]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[16]  Panos M. Pardalos,et al.  Filled functions for unconstrained global optimization , 2001, J. Glob. Optim..

[17]  Nikolaus Hansen,et al.  Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed , 2009, GECCO '09.

[18]  Mauricio G. C. Resende,et al.  Designing and reporting on computational experiments with heuristic methods , 1995, J. Heuristics.

[19]  Bernardetta Addis,et al.  A new class of test functions for global optimization , 2007, J. Glob. Optim..

[20]  Anne Auger,et al.  Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.

[21]  Andries Petrus Engelbrecht,et al.  Empirical analysis of self-adaptive differential evolution , 2007, Eur. J. Oper. Res..

[22]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[23]  Zbigniew Michalewicz,et al.  GAVaPS-a genetic algorithm with varying population size , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[24]  Elena Marchiori,et al.  Evolutionary Algorithms with On-the-Fly Population Size Adjustment , 2004, PPSN.

[25]  A. E. Eiben,et al.  Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist , 2010, EvoApplications.

[26]  Cláudio F. Lima,et al.  Adaptive Population Sizing Schemes in Genetic Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[27]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[28]  Raymond Ros,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup , 2009 .

[29]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[30]  N. Hansen,et al.  Sizing the population with respect to the local progress in (1,/spl lambda/)-evolution strategies-a theoretical analysis , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[31]  Abdullah Al Mamun,et al.  Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization , 2009, Eur. J. Oper. Res..

[32]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[33]  Cláudio F. Lima,et al.  Revisiting evolutionary algorithms with on-the-fly population size adjustment , 2006, GECCO '06.

[34]  Ali Ahrari,et al.  On the utility of randomly generated functions for performance evaluation of evolutionary algorithms , 2010, Optim. Lett..

[35]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[36]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.